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Introduction
An important challenge in small-scale robotics is
finding a robot's position when only limited sensor
information is available.  There are many
technologies available for robot localization,
including GPS, active/passive beacons, odometry
(dead reckoning), sonar, etc.  In each approach,
however, improvements in accuracy come at the
cost of expensive hardware and additional
processing power. For the robotics enthusiast, the
key to successful localization is getting the best
results out of cheap and widely available sensors.

This paper presents a method for localization
and map construction of a mobile robot using data
from a sonar-based range sensor. No prior
knowledge of the environment is assumed. The map
is constructed autonomously by the robot.

This method has been implemented and tested
using both the Rossum Playhouse simulator (see
reference [3]) and an enhanced Rug Warrior robot.
Experimental results from both the simulator and
the robot are presented at the end of this paper.

This paper and the positioning application
bundled with the simulator, is publicly available
from [1]. The source code will also be released.

The Positioning Algorithm
In its localization phase, the algorithm determines
the robot’s position by correlating a local map
(generated by a range sensor sweep), with a global
map.  While the global map can be supplied in
advance, this algorithm does not require prior
knowledge of the robot’s environment. Instead, it
uses sensor data to construct the global map
dynamically.

The algorithm estimates the robot’s location by
comparing the global and local maps. To do so, it

computes positions called feasible poses, where the
expected view of the robot approximately matches
the observed range sensor data.  It then selects a
best fit from the feasible poses.

To evaluate feasible poses efficiently, the
algorithm represents the global map as an
occupancy grid (a matrix of cells, each having a
value that indicates whether that cell is empty or
occupied).  Using its sensors, the robot determines
range vectors (distance and bearing from detected
objects or features) which are then compared
against all occupied cells in the grid.  If a range
vector can be overlaid on the grid without
interference by other occupied cells, it indicates a
feasible pose.  In addition to its occupancy value,
each cell in the grid is also assigned a certainty
value indicating the likelihood that the robot is
located at that position.   Each time a feasible pose
is identified, the certainty value of the
corresponding cell is incremented.  After all feasible
poses are considered, the grid cell with the highest
certainty value is selected as the robot’s present
position.

Ensuring that the algorithm identifies feasible
poses requires information about the robot's
orientation. Orientation can be measured from a
digital compass, a gyro or even calculated from
odometry data. While systems for measuring
orientation are often prone to error, the algorithm is
quite robust and can tolerate considerable
inaccuracy. The algorithm can also be extended to
provide corrections for measured orientation.

To create a useful local map, the algorithm
requires range measurements in a number of
different directions.   Such measurements are
readily obtained by sweeping the sensor. The robot
used in this project features a sonar sensor that is
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mounted on a servo, so a 180-degree sweep is
possible.

More information about this localization
algorithm can be found in reference [4].

The Software
A complete description of the positioning and robot
control software is out of the scope of this paper.
Detailed information can be found from link [1].
This paper provides an overview of the software
components relevant to the localization and map
construction process including:
• Grid Map representation and manipulation
• Occupancy algorithm
• Dead Reckoning algorithm
• Localization algorithm

Grid Maps
As mentioned above, a 2-dimensional grid is used
to provide a map of the robot’s environment. The
grid map consists of a matrix of cells, each
containing an occupancy value and a certainty
value. These values are used by the occupancy and
localization algorithms respectively.

Occupancy Algorithm
The occupancy algorithm creates a map of the
environment by integrating data collected over time.
As the robot explores its environment, information
from range sensor sweeps is combined with
information about the robot's location to update the
occupancy values for the global grid map.  Thus the
occupancy value for each cell in the grid indicates
whether the cell is occupied, empty or unexplored.

 Due to the inaccuracy of sonar range sensors it
is not sufficient to simply mark the cell at the end of
the range vector as occupied. Instead we need to be
able to specify an occupancy probability and
integrate range readings over time. Bayes’ rule is
used to estimate this probability. The occupancy
value ranges from 0 to 1. An initial value of 0.5 is
used to mark this cell as undecided (unexplored).
Then thresholds can be used to determine if the cell
is occupied, empty or unexplored.

Another function of the occupancy algorithm is
to appropriately update the occupancy values from a
range sensor sweep (array of range sensor vectors).
Very few range sensors can localize a detection to a

single point.  The inaccuracies inherent in a sonar
measurement require that the algorithm do more
than simply mark the occupancy value of the cell at
the end of a detection vector. The energy radiated
by a sonar transducer is not focused in a straight
line, instead it is distributed in a cone. The size of
the cone is measured by the beam-width angle of
the sonar transducer; for example the Polaroid sonar
used in this project has a half beam-width angle of
12.5 degrees. The result is a large angular
uncertainty of the range reading (i.e. even though
the sonar is pointing at 90 degrees the actual
reflection might be coming from an object
somewhere between 77.5 degrees and 102.5
degrees). In a two-dimensional space the object that
caused the reflection will be laying somewhere on
an arc (with radius equal to the distance measured
and angle equal to ±12.5 degrees). We must now
consider the probability that each point in the arc
will contribute to the occupancy value. This
probability varies along the arc as illustrated in
Figure 1.

Figure 1 – Sonar modeling

The probability that a cell is occupied along the
arc drops exponentially to Pocc(min). The
maximum probability is in the middle of the arc and
it is Pocc(max). Ideally the probability distribution
should be modeled as a Gaussian distribution. For
efficiency, a linear distribution was chosen instead
(since in order to determine the probability of a cell
a simple multiplication is required).
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For the probability of the empty cells, a similar
approach is used. Close to the arc the sensor’s range
error must be taken into account, thus the
probability that a cell is empty rises when the
distance from the arc decreases. The probability
range starts from Pempty(min) close to the arc,
increasing up to  Pempty(max) as the distance from
the arc decreases.

The occupancy of each cell in the pie is finally
updated based on the previous value and the one
calculated from the range reading.

Figures 2 and 3 illustrate how the occupancy of
each cell is updated from a single range sensor
vector. The color of each cell reflects its occupancy
value, starting from white for empty cells
(occupancy close to 0) to black for occupied cells
(occupancy close to 1). Unexplored cells are
displayed as gray (occupancy value close to 0.5).

In order to make the map responsive to changes
in the environment but at the same time reduce the
noise of false range sensor readings (due to multiple
reflections and transducer accuracy), a weight is
given to each new occupancy update. We
distinguish between two modes: exploration and
localization. During the exploration mode any
changes in the occupancy values will have the
maximum effect, but during the localization mode
each update will only have a reduced effect in the
global map. This way the map constructed during
exploration is preserved and at the same time
updated for changes made in the environment.

Information from sources other than sonar could
also be used to update the global map. For example
many robots are equipped with infrared proximity
sensors and bumper switches. These sensors can be
used to update the occupancy value of the cells
adjacent to the robot’s present position.

Dead Reckoning
Location estimation using odometry information is
a very common approach. Although fast and
relatively easy to implement dead reckoning suffers
from accumulation of errors. Dead reckoning is
only useful if a position correction can somehow be
given, so that any errors accumulated since the last
correction are zeroed out.

In this application dead reckoning is used as a
secondary source of location information.

Combined with the range sensor based localization
algorithm, dead reckoning can provide a close to
real-time location estimate. At regular intervals a
range sensor localization is performed that yields a
more accurate position. The dead reckoning
algorithm then uses this position for future updates,
effectively eliminating any accumulated errors.

Figure 2 – Occupancy update of an unexplored
area

Figure 3 – Overlapping occupancy updates.
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In order to know the approximate error of the
location calculated from the dead reckoning
algorithm, an error radius measurement is kept. In
this application it has a fixed start-up value that is
incremented every time a new location is calculated.
The range sensor based localization algorithm can
then use this information to search for a location
within this circle.

The dead reckoning algorithm used in this
application is based on the one described in paper
[5]. It is very easy to implement and it doesn’t
require much processing power for each update.
The accuracy of the location that is calculated from
the dead reckoning algorithm is not very important
in this application.

Localization
The localization algorithm is the heart of the
positioning application. It requires as input: the
global map with the occupied cells, a range sensor
sweep (consisting of an array of range vectors) and
optionally an estimated location (from the dead
reckoning algorithm). If the estimated location is
not available localization will be performed in the
complete map; otherwise the localization will be
restricted around the estimated location (within a
circle with the estimated location at its center).

Figure 4, shows how localization is performed
for a simple map with only three occupied cells and
two range vectors.

Figure 4 – Localization in a map with three
occupied cells (right) and two range vectors (left).
The location with the most votes is selected as the

present location.

The algorithm relies on the assumption that each
range vector ends at an occupied cell and that the
path between the origin of the vector and the
occupied cell is unobstructed. The procedure is
quite simple, apply the end of each vector to an
occupied cell, if the vector is unobstructed (i.e. does
not cross another occupied cell) then increase the
certainty value (or vote) of the cell at the start of the
vector. This procedure is repeated for all occupied
cells and range vectors. The end result is a map as
shown in Figure 5.

Figure 5 – Overlaid occupancy and certainty maps.

The certainty values (or votes) are represented
in colors. The higher the certainty value is, the
darker the color will be. In this map, hotspot-like
features are clearly visible. These hot spots are
feasible poses for the set of range vectors used to
perform the localization. But only one has the
highest certainty value and this is chosen as the
present location (upper left corner).

Selecting the best location is not always as
straight forward as simply choosing the cell with the
highest certainty value. In many cases more than
one cell will have the maximum certainty value. In
real world environments the votes will also be
distributed around the present location due to the
noise in the sensor readings. The localization
algorithm must take these in to account before
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choosing the best location. The procedure followed
in this application is the following:

• Average occupancy map. This is done in order
to strengthen spots were the votes are not
concentrated in a single cell but are distributed
around a hot spot.

• From the filtered map find the cells with the
highest certainty value (will usually be more
than one).

• For each of these cells, increase the certainty
value by the sum of the neighbor cells. Select as
present location the one with the highest
certainty value. If more than one then find the
average location.

In order to speed-up the localization process and
to increase the accuracy of the calculated position,
the location estimated by the dead reckoning
algorithm can be used. Since an estimate is
available, localization will only take place within
the boundaries of a circle centered at the estimated
location with a radius of the location error
calculated by the dead reckoning algorithm (Figure
6).

Figure 6 – Certainty map when an estimated
location is available. Localization is only performed

within the blue circle.

Another way to increase the accuracy of the
localization algorithm is to localize incrementally.
To do this more than one range sensor sweep is
used to perform localization. Each sweep is done
from a separate location so that a more complete
view of the environment can be seen. This process
can be thought as building a local map and then
comparing this map with the global map. Normally
a single sweep will be used to build the local map;
but if more sweeps are added, the localization
process will be more accurate. In order to build the
local map, the estimated location from the dead
reckoning algorithm is required (since localization
can not be performed in the local map). It was
found that best results are observed when between
two and four sweeps are used to build the local
map. If more are used, the map will be distorted due
to the positioning errors of the dead reckoning
algorithm. This will in turn lead to errors in the
localization process.

Figure 7 illustrates how the incremental
localization can improve the overall certainty. If this
map is compared with the one in Figure 5, it can be
clearly seen that the strength and number of the
false hot spots is greatly reduced.

Figure 7 – Certainty map after an incremental
localization (3 false hotspots compared with 8 in

Figure 5).
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Experimental Results
The algorithms described in the previous section
have been implemented and tested in an indoor
environment using a small mobile robot equipped
with an ultrasonic range sensor.  In the following
sections the robot used in the experiments will be
first briefly described, finally the results obtained
from a run in the simulator and in a real world
environment will be presented.

The test platform can be separated into two
parts, the actual robot and a remote PC (PII
350Mhz, Red Hat Linux and Sun JDK 1.3), running
the Java based positioning software.

The Robot
The robot is based on the Rug Warrior Pro platform,
but with quite a few modifications and
improvements.

In order to take the processor intensive tasks off
the on board microcontroller a RF link is required.
The Radiometrix BIM transceivers are used in this
robot. One transceiver is connected to the 68hc11
serial port and the other to the Linux box, both
running at 9600bps. Since the transceivers can not
handle re-transmission and error detection, a small
protocol had to be improvised in order to detect
corrupted packets and re-transmit them if necessary.
The robot is responsible of all low level control
tasks, such as motor and sensor control. All high-
level control tasks (positioning and map building)
are running in a remote PC.

The popular Polaroid ultrasonic range sensor is
mounted on a RC servo so that a 180-degree sonar
sweep is possible. The Polaroid sensor can measure
distance from about 15cm to 10m with an accuracy
of about 2cm.

A digital compass is necessary to get an
orientation fix since the Rug Warrior’s wheel
encoders have very limited resolution and suffer
from noise when the motors are running. The Rug
Warrior’s wheel encoders are not reliable for long
range dead reckoning (but are good enough when
combined with a more accurate positioning source).
The Vector 2x digital compass is used. This
compass gives up to 2 degrees accuracy and is
controlled through an SPI port. Like any compass a
magnetic field will influence the reading. It was
found that when the motors are running, a 5-10

degree error is produced. Large metallic objects can
also influence the reading. The localization
algorithm does not require precise orientation
information. In a robot with more reliable wheel
encoders dead reckoning could be used instead. The
localization algorithm could then be used to
produce an orientation correction.

Although the wheel encoders are not very
reliable in this robot, they are still used for short-
range dead reckoning. During the exploration phase
(map building), the localization algorithm produces
a position correction every 50 to 100cm. This
correction effectively erases any errors accumulated
by the wheel encoders.

Picture 1 – The Rug Warrior based robot.

Picture 2 – Another view of the robot.
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Figure 8 – Map construction using the Positioning software with the Rossum Playhouse simulator
(Trinity floorplan)
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Figure 9 – Map construction using the robot in an indoor environment (one big room, plus two smaller ones)
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Map Construction Using the Simulator
The Rossum Playhouse simulator has been an
irreplaceable tool for testing the positioning
software. Although some bugs can not be detected
using a simulator, it proved to be a very useful tool
for testing small changes and improvements,
without having to deal with all the difficulties
affecting a real robot (i.e. limited battery life,
obstructions in  robot's environment, etc). Of
course, tests using the actual robot were conducted
frequently.  But these could be deferred until many
of the small bugs and implementation problems had
been detected and eliminated using the simulator.
Thus real-world testing time could be spent actually
evaluating the performance and accuracy of the
system and not correcting the coding errors that
usually surface at the early stages of development.

Since the exploration module of the positioning
software is now under development, the robot was
moved around the floorplan manually. The sweeps
were also manually initiated. The actual position of
the robot was never made available to the
positioning software. The present position as seen
by the software was the one calculated from the
localization module.

The size of the map used in this run was
250x250 cells and the cell size was 2cm. A typical
move-sweep-localize-update cycle was used to
construct the map. First the robot is moved to a new
location and a 360 degrees range sensor sweep is
made. Using the range data localization is
performed and finally using the newly found
location, the global map is updated with the range
data. The cycle repeats until the complete floor plan
is explored. The map construction process is shown
in Figure 8. It took approximately 15 sweeps to
build this map. The localization accuracy plays a
major role in the map construction process. If an
update from two or three bad locations is included
in the global map, the map will be greatly distorted.
Fortunately since the location is verified using the
dead reckoning approach the possibility of such
errors is greatly reduced. The localization error
using the simulator is typically zero to 4cm (2
cells). One would think that since a simulator is
used no errors should be present in the system. Well
this is not entirely true, the positioning software
assumes imperfect sensors so in this case a perfect

range sensor with zero beam-width angle will be
modeled as imperfect (10 degrees beam-width).
Also the dead reckoning algorithm introduces errors
even when the wheel encoders are perfect.

Map Construction Using the Rug Warrior Robot
The positioning software was also tested in a real
world indoor environment using the Rug Warrior
robot. The floorplan consists of one main room
(living room) and two smaller rooms (kitchen and
hallway). Furniture and other objects, commonly
found in a house, were present in the rooms.

The positioning software used in this run is
identical with the one used with the simulator. The
only difference is that the robot proxy object is now
replaced with a proxy for the real robot. The proxy
now handles the RF communication link with the
robot. For more information regarding the structure
of the positioning software see [1].

The map construction process is shown in
Figure 9. In this run the map size was 250x250 cells
and the cell size was 4cm.   As with the simulator
the robot was manually moved (using the motor
controls available at the positioning GUI). Again
the robot’s position was never revealed to the
software. A 360-degree sweep is not possible with
this robot. So a 180-degree sweep firing every 10
degrees was used instead. This limits the robot’s
field of view. In some cases when the front view is
unexplored (e.g. when entering a new room or when
going behind a large object), a localization is not
possible since enough information about the
environment is not available. This problem can be
solved in a number of ways. One solution is to pivot
180 degrees and then perform a range sensor sweep
looking at an explored part of the room. Then
having found the location, the robot pivots back to
its original orientation and performs another sweep.
This sweep is then used to only update the map and
not localize. Another way is to use the incremental
localization feature taking range sensor sweeps
before the unexplored region is entered. Finally in
some cases simply relying in the location estimated
by the dead reckoning algorithm is good enough,
until enough information is gathered about the
unexplored space to make accurate localization
possible.
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The positioning accuracy varies, depending on
the location and the errors in the range readings.
Typical values are in the range of 8cm, some times
errors as high as 20cm were observed due to errors
in the range readings. Fortunately this doesn’t
happen very often and even when it does, a second
sweep from a slightly different position will most
likely produce better results. Range errors due to
higher order reflections of the ultrasonic pulse can
be clearly seen all over the map but overall they
didn’t have a major impact on the structure of the
map.

The small patch of occupied cells in the center
of the map is a small footrest in the center of the
room. The footrest is almost covered in cloth, this
has been proven to be a week reflector of ultrasonic
pulses so some times a false range, well beyond the
footrest, will be returned. When this range is used to
update the map the occupancy value around the
footrest is reduced. Some improvements can be
made in the occupancy algorithm to compensate for
such problems.

Major improvements have been made to the
time it takes for the localization algorithm to
determine the present location. If the estimated
location from the dead reckoning algorithm is used,
localization takes less than 1 second. Localization in
the complete map takes approximately 2 seconds
(depends on the number of occupied cells and range
vectors). All tests are done using a 350MHz, PII PC
running Red Hat Linux and Sun JDK 1.3.

Conclusions
This project is still work in progress. Some
improvements can be made to the existing
positioning modules in order to improve accuracy
and robustness.

With the completed positioning software it will
be possible to deploy the robot in an unknown
environment, and have it autonomously explore and
map the floorplan. To achieve that a number of
modules need to be developed. First a path planner
is required in order to determine the most efficient
obstacle free path to a target location. The path
planner will be combined with a reactive strategy,
so that the robot can handle unmapped or mobile
obstacles. An exploration algorithm also needs to be
implemented. The exploration algorithm will find

the best locations that the robot must go so that all
accessible space is efficiently mapped. A possible
candidate is the ‘Frontier based exploration’
approach.

The positioning software is available for
download and can be used with the Rossum
Playhouse simulator. It is 100% Java so it can be
run on any platform that a Java Virtual Machine is
available. It can also be used to control robot
architectures other than the one used in this project.
The software structure is highly modular so only the
robot proxy object needs to be replaced. The source
code will be made available soon.

This paper and more up to date information
about this project can be found from [1].
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