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1 Introduction 

1.1 Document Scope 
This document provides information on how to use the Rossum’s Playhouse (RP1) robot 
simulation. It is intended to serve as a companion piece to the other two components of the RP1 
documentation set: a Javadoc-generated HTML reference giving details on the Application 
Program Interface (see paragraph 1.6.4 below), and example code demonstrating methods for 
implementing simulator applications (paragraph 4.2, etc.). 
 
The RP1 User’s Guide is divided into 5 sections.  The first three provide background information 
that will help you understand the architecture of the system.   You may either skim these or read 
them in detail depending on your preference.   The fourth and fifth sections discuss how to create 
your own virtual robots and robot software for the simulation environment.   If you wish to use 
the simulator for that purpose, you should read these sections in detail. 
 
As with everything else related to Rossum’s Playhouse, this documentation is a work in progress. 
It will be improved in the future as user needs become apparent.  And although the document is 
incomplete, the Users Guide does attempt to identify the important elements of the system and 
provide sufficient detail to get you started. Most of the more complicated issues of the 
simulator's implementation are encapsulated in the systems internals, so you will not have to deal 
with them when writing RP1 applications. So by combining this Guide with the Javadoc and 
example code, you should be able to glean a good understanding of RP1, its behavior, and good 
strategies for using this simulator. 
 
RP1 is coded in Java.  In writing this document, we have tried to avoid relying too much on the 
reader being familiar with the Java programming language.  Some knowledge of Java would 
certainly be helpful, but it is not absolutely required.  Paragraph 1.6 below gives a sketchy 
introduction to the language and its more important terminology. 

1.2 System Overview 
Rossum’s Playhouse (RP1) is a two-dimensional mobile-robot simulator.   It is intended to be a 
tool for developers who are building robot navigation and control logic.   RP1 does not model 
any particular robot hardware, but provides components that can be configured and extended to 
represent the platform of choice.  The simulator is a starting place for software development, not 
an end in itself.   A key factor in the RP1 design is that code developed using the simulator can 
be moved to the target hardware more-or-less intact.  
 
All source code for the RP1 system is provided in the standard software distribution. 

1.3 RP1 as a Collaborative Effort 
Rossum’s Playhouse is intended to be a collaborative development effort. In the last 10 years, a 
number of successful systems have been developed through collaboration.  Examples include the 
Linux operating system, the GNU C compiler, and the Apache web server (which runs more than 
half the web pages on the Internet).  All of these systems grew in both features and sophistication 
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through the contributions of code, algorithms, and general comments of interested users and 
developers. 
 
We hope that RP1 will follow the model established by these systems (albeit, on a far smaller 
scale).   From the beginning, the software was implemented with this goal in mind.  To support 
collaboration, the RP1 system design strives for openness.  The architecture is modular and there 
are plenty of opportunities for improvement.    
 
We are seeking code, algorithms, and recommendations for useful features.  A “wish-list 
document” is included as part of the RP1 software distribution. 

1.4 Use and License 
The RP1 source code is freely available and may be copied and distributed according to the 
stipulations of the GNU General Public License (GPL).    The full text of the GNU General 
Public License is provided in the text file “gpl.txt” which is included in the RP1 software 
distribution. Note that the GPL applies only to the RP1 code itself or code derived directly from 
RP1 source. The GPL license does not, in any way, assert claims over original code that merely 
interacts with the RP1 environment. 

1.5 Programming Language and Run-Time Environment   
All source code for Rossum’s Playhouse is written in Java.   All run-time code currently 
available is in the form of compiled Java class files. 
 
Of course, Java is not the “language of choice” for many robot developers.  Keeping the system 
language-independent was one of the most important element in its design.   The techniques used 
to support this goal are described in the section on System Architecture below. And, in fact, some 
time into the project, a volunteer developer did contribute a C/C++ API for the simulator which 
is now available on our web site. 
 
To run the Rossum’s Playhouse simulation, you will require a system with the Java Run-Time 
Environment (JRE), Java Software Development Kit (SDK), or one of the many Integrated 
Development Environments (such as Borland’s JBuilder or the Eclipse Foundation’s free Eclipse 
IDE).   Versions of the JRE or SDK for Sun Solaris or Windows architectures can be 
downloaded from the Internet from Sun’s Java site http://java.sun.com/products.   Other 
equipment manufactures have their own versions of the SDK.   Rossum’s Playhouse currently 
requires Java version 1.2 or later. 
 

1.6 A Very Quick Introduction to Java 
This section of the Users Guide provides a quick introduction to some of the terms and concepts 
used in Java.   If you are unfamiliar with the language, these notes should help you navigate the 
remainder of the document.  Syntactically, Java resembles C.   It is a terse, but expressive and 
highly readable computer language.   Developers with experience in other computer languages 
should be able to follow the code without undue effort. 
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If you are interested in learning more about Java, there are a vast number of books on the subject. 
Unfortunately, most of them are not very good. So you should exercise some caution before 
making a purchase. There are several good web sites offering Java tutorials and other 
introductory material. Some of the best are offered by Sun Microsystems, which originally 
developed Java, and the IBM Corporation, which has made a substantial investment in Java 
technology. 

 
New to Java (Sun Microsystems) 
http://java.sun.com/learning/new2java/index.html 
 
New to Java (IBM) 
http://www.ibm.com/developerworks/java/newto/ 
 
Java SDK 5 Documentation 
http://java.sun.com/j2se/1.5.0/docs/index.html 
 
Java SDK Tools and Utilities 
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html 

 
As with any other web resource, these are subject to change. If you cannot find them, try visiting 
Sun’s main Java site http://java.sun.com or the IBM site at http://ibm.com. Beyond that there are 
many, many other introductions, special-topic discussions, and tutorials on the web. 
 
Java is an object-oriented programming language.  The key entity in an object-oriented language 
is, naturally, the object.   In an object-oriented program, all operations are accomplished through 
the interaction and manipulation of objects.   The concept of the object is related to that of 
structures in C or records in Pascal.   Like structures, objects contain data elements.   In addition, 
they also provide methods for accessing and manipulating that data.   Java uses the term 
“method” in the much the same way as C++ and other languages use the term “function.” A 
method is simply a reference to executable code that is associated with a particular object or 
object definition. 
 
In Java, objects are defined using the class specification. A class is an abstract entity, much like 
the type definition for a C structure.   The distinction between classes and objects is important. 
Classes are specified in source code, objects are created at run-time by the application. The class 
specification is used to create an object, which then may be used to invoke the methods that were 
specified in the class.    An object has a specific location in memory and it is possible for a 
program to create multiple objects of the same class.   Some documents refer to the act of 
creating an object using the rather fancy phrase “to instantiate an object.”   Objects are 
sometimes called “instances” or “instantiations” of a class. 
 
When a class includes a method, the method can be invoked from any object of that class.   For 
example, suppose the class “Robot” includes a method called “moveForward”.   Then the 
following fragment of code shows how the moveForward method might be invoked: 
 

Robot robbie = new Robot();   // the “new” instantiates an object 
robbie.moveForward(1.5);      // move forward 1.5 meters. 
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Classes can also contain data elements that can be accessed in a similar manner: 
 

double massInKg = robbie.massInKg; 

 
Note that in Java, all statements end in a semicolon. 
 
The Java equivalent of a program is called an “application.”   An application consists of one or 
more classes which are compiled from Java source code.  Java source code is stored in files with 
the extension “.java”.   Each Java file defines one class with the same name as the data file.   For 
example, the Java class “RsProtocol”, which is used for communication in the RP1 system, must 
be defined in a file called “RsProtocol.java”.    The Java compiler, javac, processes Java source 
code producing files with the extension “.class”. “RsProtocol.java” would be compiled to 
“RsProtocol.class”.     
 
Java is an interpreted language.   The Java class files do not contain native machine instructions, 
but rather a set of abstract binary codes which are interpreted by the Java Virtual Machine 
(JVM).  The JVM is a program that runs on the target computer and acts according to the 
specifications in the class file.  On most systems, the JVM program is called “java”.   A Java 
application called Foo is run using the command “java Foo.”   The JVM looks for a class file 
called “Foo.class” and uses it to run the application. 
 
An application can consist of a great number of classes, often with associated data files or 
computer-graphics image files.   As an application grows in complexity, it becomes convenient 
to collect its components into what Java calls “packages.” 
 
A package is, roughly, the Java equivalent of a “library.” A package is a directory or an archive 
containing multiple classes and related data files.   Java packages have a close relationship with 
the file directory structure.  All the class files for a particular Java package must be stored in a 
directory with the same name as the package.    For example, the RP1 software distribution 
provides a package called “rossum” which includes general tools for building RP1 client 
applications.   All the class files for that package are stored in a directory that is also called 
“rossum.”   
 
When dealing with an application or a package that contains a large number of files, it is often 
convenient to store those components in an archive.   Although Java code can be stored in 
conventional zip files, Java also provides its own archive format called the “jar” file.   The Java 
jar format is similar to that of zip files, but jar files can be accessed at run time without being 
previously uncompressed.   Jar files also have to virtual of being portable to non-Wintel systems. 
 
Summarizing the terms introduced above: 
 
. 

.java the extension used for Java source code files 

.class the extension used for compiled source code 

.jar the extension for Java archive files 
application the Java equivalent of a program 
instantiate to create a new object of a particular class 
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instance an actual object of a class 
method the Java equivalent of a function or subroutine 
package a collection of Java classes (equivalent to a library), 

packages are always associated with a folder (directory) 
 

1.6.1 Applications, Applets, and Browsers 
As mentioned above, the Java equivalent of a program is an application.  An application is run 
when the user launches the java executable (or other JVM) directly from the command-line or 
windowing environment.   Java also supports a kind of psuedo-application, called the “applet” 
which can be launched from a Java-capable web browser.    
 
The main difference between an applet and an application is that, for security reasons, an applet 
has limited access to a system’s resources.  Security is an important consideration when using 
applets because they are often downloaded from the Internet from unknown and potentially 
unreliable sources.  When run from a web browser, applets will usually be unable to read and 
write files on the user’s system. 
 
All the RP1 software is provided as applications.   They can be modified to function as applets, 
but the current revision does not provide an API to support such a use directly. 

1.6.2 Important Considerations about CLASSPATH and Packages 
 
The most common problem that users new to Java have when running an application is difficulty 
with class path settings. The text below gives some introductory material and, for more 
information, you can also visit the following web pages: 

 
How Classes are Found 
http://java.sun.com/j2se/1.5.0/docs/tooldocs/findingclasses.html 
 
Setting the Classpath 
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/class path.html 

 
When a Java application is executed, it needs to know where to find the various class definitions 
and other resources that are associated with it. Unlike programs, the binaries for a Java 
application (the class files) are not linked together before the application is executed. The class 
files that comprise the application may be scattered across several packages (directories or 
folders). And applications often require additional resources such as graphic elements (gif or 
jpeg images), properties files, session data, etc. 
 

To provide this information, Java uses a concept called the class path. The class path is a string 
specifying paths to folders, directories, or zip and jar files where Java is supposed to search for 
class resources. A class path can define multiple folders or directories by separating the 
specification with either a semicolon (under Windows) or a colon (under Linux/Unix). 

In windows: 
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CLASSPATH = c:\Program Files\Java\MyStuff;c:\Robotics\RossumsPlayhouse 
 

in Linux/Unix: 
CLASSPATH = /usr/local/bin/MyStuff:/home/users/smith/RossumsPlayhouse 

 

By default, Java will look in the current directory or folder when you launch an application 
(earlier versions of Java did not). If the class path is defined, Java can also look in those paths 
specified as shown in the example above.  

Typically, the class path is set as an environment variable. In Windows, environment variables 
are set using the System tool (Programs/Accessories/System) or in the Properties menu (under 
“Advanced” associated with the “My Computer” icon). In Unix and Linux systems, it is set in a 
resource file in the user’s home space (.profile for the Korn Shell environment, .bash_profile for 
the BASH shell environment). 

 

The specification of a class path is closely tied to the location of the packages (folders) 
containing the RP1 source code and classes. The main class for RP1 is called “Server” and is 
stored in a package called “rp1”. Once Java is properly installed and the CLASSPATH 
environment variable is set, the RP1 simulator can be launched in a command window (on Unix, 
Linux, or Windows) or in the Windows Start/Run utility by typing the following command: 

 java rp1.Server 

The java command launches the Java Virtual Machine (main Java interpreter). The rp1 
specification tells it to look for a package called “rp1” within the various folders specified by the 
class path setting. The Server specification tells it to look for a class by that name once it has 
identified the package. From there, Java can find all the information it needs to run the RP1 
simulator. 

1.6.3 Package and Import Statements in Java Source Code 
The Java language includes two important keywords related to package and class path. The first 
keyword, package, allows the source code to declare its membership in a particular package. 
Although Java does permit the package statement to be omitted, all RP1 source code uses 
explicit package statements. For example, the main container package for all the primary RP1 
source code is called rp1.  General utilities are under the package rp1.rossum and source code 
intended solely for simulation purposes is under the package rp1.simulator. Thus if you examine 
Java source code in the rp1.rossum package, you would see the following statement close to the 
beginning of each file: 

 package rp1.rossum; 
 

When processing the RP1 source code, the Java compiler uses the class path to find the directory 
(folder) named rp1 and then follows the sub-specifications in the package statement.  

Code that accesses the classes in rp1.rossum must include declarations that tell the Java compiler 
where to find those classes. This specification is accomplished through an import statement. 
Import statements can include a specific class or use a wildcard specification (an asterisk) to 
import all classes in a particular directory as in the following examples: 
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import rp1.rossum.RsProperties; 
 
import rp1.rossum.*; 

 

The rossum package itself is divided into two subdirectories, event and request. All of these 
include classes that are needed for RP1 applications. While it is possible to use a very selective 
syntax to specify what classes are needed, many application that use RP1 code will include the 
following statements 

package myPackage;     // the package name for the application 
import  rp1.rossum.*; 
import  rp1.rossum.event.*; 
import  rp1.rossum.request.*; 

 

Note that event though it includes a wildcard, the statement “import rp1.rossum.*” will not 
enable the Java compiler to find classes in the subordinate packages event and request. The 
developers of Java have taken a very strict, constructionist approach on many of the 
implementation details in the language. 

For example, the RP1 distribution includes a package called rp1demo that provides 
demonstration applications. The source code for those demonstration applications usually 
includes the use of the wildcard operator. In cases when only a single class was needed from one 
of the event or request sub-packages, the code sometimes includes that class using the highly 
specific form, such as: 

import rp1.rossum.event.RsTimeoutEvent; 

 

1.6.4 About Javadoc, an automatic API documentation generator, and RP1 
Among the tools in the Java Software Development Kit (JDK) is a utility called Javadoc that can 
be used to automatically generate API-level documentation for Java code. Javadoc parses source 
code, extracting from it information about Java class structure, derivations, method signatures 
(calling arguments), and cross-references. This information is compiled into a HTML document 
that can be read using a web browser.  Javadoc has the ability to read documentation from 
comments written in a special format and can include that text as part of the HTML. 

As of release 0.60, the RP1 source code includes Javadoc-related comments and supporting 
information. The file RP1public.zip, which may be downloaded from the Rossum Project 
website, contains HTML documents generated for public classes and method calls in the 
rp1.rossum package and sub-packages. Most of these are elements needed for writing RP1 
application software. If you download and unpack the zip file, you may examine Javadoc 
products using a web browser (in Windows, you can simply double click on the file “index.html” 
in the main RP1public folder). 

The HTML in the standard distribution is restricted to the public elements in the rp1 packages. 
This restriction is applied to screen out information that may be distracting to an RP1 application 
developer who isn’t interested in the simulator’s internals.  If you wish to see the additional 
information, you may run Javadoc yourself and generate HTML for the overall software 
distribution. A typical command would be 
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 javadoc -d <your output directory>  
rp1.simulator rp1.rossum rp1.rossum.event rp1.rossum.request 

 
At this time, Java comments have been added to most of the classes, but few of them are 
completely documented. 
 

1.7 Directories, Files, and Hierarchy 
The 0.6x distribution of RP1 includes a hierarchy of folders. In the top-level, there are four 
folders as listed in Table 1 and four files as listed in Table 2. 
 
 
 

Table 1 – Folders in Top-Level Folder 

Folder Description 
rp1 Source code and compiled class files for the RP1 simulator. 
rp1demo Source code and compiled class files for the RP1 demo applications. 
FloorPlans Text-based files providing the “floor plans” for simulated environments.  

Includes floor plans for various demo’s. 
Properties Properties files (.ini extension) providing set-up data for various simulation 

runs. Includes properties for various demo’s. 
 
 
 

Table 2 – Files in Top-Level Folder 

File Description 
readme.txt Release notes 
gpl.txt Statement of GNU Public License (GPL) 
FireFighter.bat An example of a DOS “.bat” file that demonstrates how a user can launch 

the fire-fighting demo application by clicking on an icon in a file browser. 
This file is also intended to provide an example command-line argument 
and will work as a Unix/Linux shell script. 

LineTracker.bat An example of a DOS “.bat” file that demonstrates how a user can launch 
the line-tracker demo application by clicking on an icon in a file browser. 
This file is also intended to provide an example command-line argument 
and will work as a Unix/Linux shell script. 

 
 
Recall that Java packages are associated with actual folders on disk. For example, the folder 
named “rp1”, which was include in the list for elements in the top-level folder in Table 1 above, 
corresponds to the Java package of the same name. A subfolder of rp1 named “rossum” 
corresponds to the Java package rp1.rossum. From an application developer’s point-of-view, the 
most important package in this set is rp1.rossum because it provides all the client-side classes. 
Table 3 lists the contents of the rp1 folder. 

 8



 

Table 3 – The Folder “rp1” and its Contents 

Element Type Description 
Server.java Java 

source  
The source code for a Java “main” method that can be used to 
launch the simulator. 

Server.class Java class 
file 

The binary for the main simulator (compiled from source code 
Server.java) 

RP1.ini properties 
file 

A Java-style properties file defining options for the RP1 simulator 
(the Server) 

rossum package Java package rp1.rossum containing the source and compiled classes 
for the rossum package, a set of general tools used by both clients 
and servers. For an application developer, the most relevant classes 
include RsClient, and the classes associated with the RsBody class. 

rossum/ 
event 

package Java package rp1.rossum.event containing the source and compiled 
class files for RP1 events (see section 5, Events and Requests). 

rossum/ 
request 

package Java package rp1.rossum.request containing the source and 
compiled class files for RP1 requests (see section 5, Events and 
Requests). 

simulator package A Java package containing the source and compiled classes for the 
simulator package 

planparser package A Java package providing code for parsing in floor-plan files. 
 
As mentioned above, the standard software distribution contains example code under the 
package “rp1demo” in the main folder. Each folder has a “main class” that contains the main 
method for the demo. For example, under rp1demo.ackermain, the main class is called 
“Main.java” and the application can be launched with the command  
 

java rp1demo.ackerman.Main  
 

This command will cause Java to launch the “ackerman” demo application which, in turn, will 
attempt to connect to the RP1 Server.  
 

Table 4 – Packages Included Under rp1demo 

Package Main 
Class 

Description 

ackerman Main Provides the simplest demo application, showing a vehicle with an 
Ackerman steering mechanism navigating an empty floor plan. Run: 

java rp1.Server –p ackerman.ini 

clientzero ClnMain A simple client that interacts with user mouse clicks. Run: 
java rp1.Server –p clientzero.ini 

demozero DemoMain The fire-fighting robot demo launched from the FireFighter.bat 
script mentioned above. DemoMain extends the class ClnMain and 
used the robot body specifications from the clientzero package. 

linetracker LtMain The line-tracking robot demo launched from the LineTracker.bat 
script mentioned above. 
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1.8 Running RP1  
Now that we’ve described the general layout of directories, packages, and the class path for RP1, 
we can describe launching the application. The main class for RP1 is called Server. It is stored in 
the package called rp1. Therefore, once the class path is set, we can run the simulator using the 
following command: 
 

 java rp1.Server 

 
Java will search the folders specified in class path looking for the rp1 package. Within that 
package it will look for a class called Server. On Unix or Linux, the command given above can 
simply be typed in at the command prompt in a terminal window. On Windows, you can type in 
this command using either the Run utility under the Start menu or by launching a Command 
Prompt (a text-based interface resembling the old DOS command interface... in Windows-XP, 
the command prompt is found in Start/Programs/Accessories). 
 
The class path is often configured to point to a particular folder, or set of folders, but Java 
provides an additional capability. It is possible to include .zip archives and Java .jar files as part 
of the CLASSPATH. The class loader used by Java will search the archive files just as if they 
were a standard directory hierarchy. 
 
For example of how useful this feature can be, suppose you downloaded the RP1 distribution for 
some revision 0.6 or higher. Suppose also that you stored the archive file on your C disk in a 
folder called myStuff/RossumProject. Even if you hadn’t set your class path, you could run RP1 
and supply the class path as a command-line argument: 

 
 java –classpath c:/myStuff/RossumProject/Sim060.zip rp1.Server  
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1.9 Terms and Abbreviations 
The following is a partial list of terms and abbreviations are used in this document or in related 
materials. 
 
API  Application Program Interface 
CAD  Computer-Aided Drafting 
DLC*  Dynamically Loaded Client 
GPL  GNU General Public License  
ICD  Interface Control Document 
IDE  Integrated Development Environment 
J2SE  Java 2 Standard Edition 
JRE  Java Run-Time Environment 
JDK  Java Development Kit (old term for SDK) 
JVM  Java Virtual Machine 
RP1*  The simulator, “Rossum’s Playhouse # 1” 
SDK  Java Software Development Kit 
TCP/IP Transmission Control Protocol/Internet Protocol 
jar  command to invoke the Java Archive utility 
javac  command to invoke the Java compiler 
java  command to invoke the Java interpreter (Java Virtual Machine) 
javadoc command to automatically create documentation of Java classes 
 
   *non-standard term, usage specific to RP1 project 
 

1.10 Units of Measure 
In the external user interfaces, the RP1 simulator and related applications are free to display 
distance and angular measures in whatever units the user pleases.   In the floor plan 
specifications, the user may control which system of units are used to describe objects in the 
simulation environment (by default, metric units are used).  In the floor plan, all angle and 
orientation values are given in degrees, measured anti-clockwise from the x-axis. 
 
Internally, and in the classes and parameters that comprise the RP1 API, distance is always 
measured in meters.  Internally, and in the RP1 API, angles are always measured in radians, anti-
clockwise from the x-axis.   Time is measured in seconds when using real-valued specifications. 
Linear velocities are in meters per second. Rotational velocities are in radians per second. 

 11





2 System Architecture 
  

2.1 The Client-Server Architecture 
RP1 is based on a client-server architecture. 
 
Anyone who has ever operated a web browser has experienced a client-server architecture.  The 
browser, a client program resident on one computer, connects to a server which is resident on 
another.  The two programs exchange data via network-based communications. Often, more than 
one client may connect to the server simultaneously. 
 
Though its implementation is quite different than that of a web browser/server, the relationship 
between RP1's client/server components is analogous. In RP1, the server is the simulator and the 
virtual world that it provides.  The clients are the robots that occupy that world.   The server 
provides the virtual hardware for those robots.  It models their bodies and physical interactions 
with their simulated environment.  It responds to their commands to change position or begin a 
movement and provides them with sensory feedback.   But it does not control the robots.  
Control comes from the clients.  In a sense, the clients provide the "brains" for the robot, while 
the server provides them with a "world." 
 
You may develop and test robot logic by writing your own clients for the RP1 server.  The 
standard Rossum's Playhouse software distribution includes code for example clients as well as a 
Java API to support their development. 
 

2.1.1 Network/Local Connections versus Dynamically Loaded Clients 
The RP1 client and server can run in two different modes: 
 

1. as two individual programs, potentially written in different languages and running on 
different computers (if the programs run on different computers, the client establishes a 
network connection; if they run on the same computer, the client establishes a local 
connection). 

 
2. using a Dynamically Loaded Client (DLC) which is loaded into the server at run time 

so that both client and server logic is executed within a single application. 
 
Each of these approaches has its own advantages and disadvantages.  If you implement the client 
and server as separate programs, it does permit you to run a client that is not written in Java.1  It 
also provides better isolation between the client and the server for debugging purposes.  If the 
client is crashing, it does not affect the server (and visa versa).   And, again, it even allows you to 
run a client on a different machine (and even a different kind of machine) than the server. 
 

                                                 
1 A C++ API is available for release 0.5 of the simulator. Unfortunately, changes made to release 0.6 rendered it 
incompatible. Updates are planned for the future. 
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On the other hand, the Dynamically Loaded Client (DLC) can be easier to use.  It is easier to 
manage one program than two.   And because a DLC can be incorporated into the same JVM 
session, it has the option of bypassing the network-communications mechanisms and using much 
more efficient data transfers than when separate programs are used. 
 
At this time, dynamically loaded clients are restricted to Java applications.  

2.2 Why a Client-Server Architecture? 

2.2.1 Language Independence 
The primary motivation for adopting a client-server architecture was language independence.  
Although the RP1 simulator is written in Java, few developers implementing robotic software are 
currently working in that language.   The division of the simulation into separate entities, a client 
and a server, allows the two components to exist in different environments.   Client programs are 
free of any dependency on Java.  They may be written in a number of different languages and 
may even run on a different computer than the simulator/server.  The only system requirement is 
that the platform of choice be able to handle elementary data types and network connectivity. 

2.2.2 Quicker Development for User Implementations 
The client-server architecture simplifies user implementations by separating their code from the 
simulator software.   Code written for independent clients tends to be more modular and more 
easily extracted from the simulator.   The overall size of client executables is reduced, thus 
permitting faster development, testing, and modification.  And because the client and server are 
implemented as separate entities, it becomes easier to identify the source of problems.  If the 
client crashes, the simulator continues to run and can accept new connections without delays for 
start-up times. 

2.2.3 Extensibility 
Even a full-featured simulator cannot meet every user need.  Eventually, there will be some 
requirement that falls outside the range of the simulator.   The client-server architecture used for 
RP1 allows users to easily develop interface layers in their applications to allow them to extend 
the capabilities of the simulation.   Because the client-server architecture provides the user with 
more control over their own code than they would in an integrated simulation, the architecture 
allows them more freedom in building their applications.   Users are free to import tools, adapt 
existing solutions, and code the algorithms without the restrictions that other architectures might 
impose. 
 

2.3 Client-Server Communications 
Of course, for a client-server architecture to work, there must be some mechanism for the client 
and server to talk to each other.   In paragraph 2.1.1, we mentioned that there were two modes 
for running the client and server modules.   If the modules are run as separate programs (or as 
Java applications running in separate Java Virtual Machine sessions), RP1 uses a network-based 
communication mechanism known as the "socket."   If the client module is loaded dynamically, 
it can still use socket communications, but might benefit from a more efficient mechanism 
known "piped data streams" or "pipes."   Pipes are a means of allowing one part of a program to 
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talk to another part as if they were separate entities2.   Because pipes are restricted to a single 
program, they can bypass the overhead associated with socket communications. 

2.3.1 Network and Local Connection Issues 
When running as separate programs, RP1 clients and servers communicate using the same 
protocol that is used in many internet applications, including net browsers and email 
applications.   This protocol, which is called TCP/IP (or, in informal settings, Internet protocol), 
provides reliable connections between the client and server and permits them to communicate 
without loss of data.  While TCP/IP is widely used for internet communications, it is also 
suitable for exchanges between programs running on the same computer.   When a client 
connects to a program running on the same computer, it is said to be making a connection to the 
localhost, thus making a local connection rather than a network connection. 
 
An excellent discussion of TCP/IP network communications can be found in “TCP/IP Network 
Administration” by Craig Hunt, published by O’Reilly and Associates. 
 
When a TCP/IP client attempts to connect with a server, it does so by specifying a hostname or 
internet address.   Hostnames are generally human-readable strings.   Before they can be used by 
the computer, they need to be resolved into to an IP address.   An IP address is a single integer 
value which gives a unique address for every computer on the associated network (and, perhaps, 
the Internet itself).  For human-purposes, IP addresses are typically expressed as a set of four 
values such as 198.186.203.33. 
 
Any particular host may be running several servers (or "services").  So in addition to the host 
address, a client wishing to connect to a particular server will require something to indicate 
which one it wants.   This specification is accomplished through the use of a port number.  A 
port number is an arbitrary two-byte integer value.   Service are assigned to port numbers 
according to convention and accepted practice.  For example, http (worldwide web) connections 
user port number 80.   The POP3 post office protocol (used for email) uses port 110.   The file 
transfer protocol (ftp) use 21, etc. Port values between 0 and 1023 are commonly reserved for 
system applications (such as  ftp, telnet, timed, etc.) and should not be used for other 
applications. 
 
In the current revision of Rossum’s Playhouse, details such as port assignment and host are 
specified in the properties file “rossum.ini” which is described below. In the version supplied 
with the Version 0.6x distribution, the following values are supplied: 
 
 host: 127.0.0.1 
 port: 7758 
 
The IP address 127.0.0.1 is called the “loopback address.” A loopback address allows a machine 
to make a virtual connection to itself.   It allows a client to look for the server on the same 
machine as the one on which it is running.  If you wish for a client to communicate with a 

                                                 
2 In Java, pipes are actually a method of allowing different threads to exchange data and, in fact, may result in 
deadlock if used to communicate within a single thread. 
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machine other than its own host, you will have to change this IP address.   If your network is 
configured properly, the RP1 software will also accept hostnames as entries in this field. 
The port number is read from “rossum.ini” and reserved for client connections when the server 
starts up.   There is nothing special about the value 7758, we simply chose a port number that we 
thought would not be used by another application.    There is a small, but non-negligible, 
probability that there will be another process running on your system which allocates this port 
number.   In that case, there will be a conflict and the simulator will be unable to run.   The 
conflict will be noted in the RP1 run log.  To resolve the problem, simply chose a different port 
number and restart the simulator. 

2.3.2 Communication via Events and Requests 
Once the server (simulator) is running, it may accept connections from clients at any time using 
the TCP/IP protocol.   TCP/IP is a low-level protocol sufficient for establishing connections 
between clients and servers, but most applications require that a higher-level protocol be 
implemented “on top” of TCP/IP to support the exchange of meaningful data.  Rossum’s 
Playhouse implements a set of conventions known as the “RP1 protocol.” 
 
In the RP1 protocol, most data is exchanged between a client and server in the form of messages.   
Messages sent from the client to the server are described as “Requests.”  Messages from the 
server to the client are “Events.”   A typical request might be something like “set the wheel 
velocities for the robot drive system.”   A typical event might be “sensor 1 detected a light source 
5 degrees off its central axis.”   The choice of these terms reflects the realities of controlling an 
actual robot.   Although an operator might “want” a robot to move in a particular way, physical 
issues (such as wall collisions or power limitations) might make it impossible for the system to 
comply. Therefore, messages sent to the robot are described as “requests” rather than 
“instructions” or “commands.”    Similarly, the choice of the word “event” reflects the 
probability that conditions might occur in the simulated world that are unpredictable and require 
the client to respond without warning. 
 
In general, you will not need to know the details of the RP1 protocol.  It is handled by the rossum 
API which provides a simple interface for exchanging data. 
  

2.3.3 Keeping the RP1 Protocol Language-Independent 
The importance of permitting clients to be written in languages other than Java was noted above.   
In the existing RP1 code, messages are implemented (quite naturally) as Java classes.   Java 
provides an elegant method for transmitting classes between different applications 
(“applications” are the Java equivalent to “programs”).   But this method, called “object 
serialization,” requires a special data encoding that is not easily implemented in other languages. 
    
To avoid language-dependencies, RP1 implements its communications using primitive data 
elements such as floats and integers. These elements are defined in an architecture-independent 
format that allows communications across normally incompatible platforms. 
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2.3.4 C/C++ API for RP1 Clients 
From the beginning of software development for RP1, it was hoped that other members of the 
open-source community would collaborate to provide support for client applications and 
programs written in languages other than Java. One such volunteer, author James Y. Wilson, 
wrote a C++ API that is currently available for RP1 revision 0.5 and older. Due to changes in the 
interface, this API is not compatible with revisions 0.6 but will be updated in the future. 
 

2.3.5 Documentation for the RP1 Protocol 
The RP1 protocol is not documented in this time.   If there is sufficient interest, an Interface 
Control Document (ICD) may be developed in the future.   Again, if your application uses the 
RP1 API, all details of the protocol should be encapsulated by the software. 
 
If you do need to investigate the RP1 protocol, you may do so by studying the source code.  
Because we lacked the resources to develop an ICD for the initial releases of RP1, we tried to 
design the Java classes related to communications so that they would be largely self-explanatory.    
Users and developers may obtain the information about the RP1 protocol by studying the 
following classes found in the “rossum” package (subdirectory): 

 
RsProtocol  base class for RP1 protocol; 
RsClient  client-side communications; 
RsConnection  server-side communications. 
 

2.4 Configuration Elements and Properties Files 
All RP1 client applications depend on at least one properties file, rossum.ini, which specifies the 
network communications port that clients can use to connect to the Server.  The Server, of 
course, also needs this information so that it knows on which port to establish its service.  The 
rossum.ini file is treated as a Java “resource” and is stored as part of the rossum package (recall 
that Java packages are equivalent to directories).    Because it is treated as a resource, you do not 
have to worry about file path.   As long as Java can find the rossum package, it will be able to 
find the rossum.ini resource (and if it can’t find the package, you won’t be able to run the 
application anyway). 
 
The information in the rossum.ini file is used to populate the elements of a Java class known as 
RsProperties.    The RsProperties class is derived from Java’s standard Properties class.   In Java, 
Properties can be used to read a file which specifies a set of  values using a simple syntax which 
resembles a traditional assignment statement: 
 

# rossum.ini -- fundamental specifications for all RP1 applications. 
 
port=7758 
hostName=127.0.0.1 
logFileName=rossum.log 
logToFile=false 
logToSystemOut=false 
logVerbose=false 
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Figure 1 – Properties specifications from rossum.ini 

 
Java’s Properties class provides methods for getting the strings associated with each properties 
name.   Because RsProperties extends Properties, it inherits all of Properties methods.  For 
example 
 

RsProperties rsp  = new RsProperties();     
String       name = rsp.getProperty(“hostName”); 

 
 
 

2.4.1 The “port” and “hostName” Properties 
RsProperties also extends Properties by adding fields that are relevant to RP1.  The most 
prominent of these is the “port” value mentioned above.   It also supplies the host specification 
for RP1 clients.   The Server will always need the port specification.   The clients will always 
need the host specification (to find the Server).   All RP1 applications that use RsProperties read 
the rossum.ini file and, except where you override the specifications (discussed below), all RP1 
applications will use the port value assigned in rossum.ini.   This feature makes it possible to 
reassign the port value for the entire family of RP1 applications by modifying a single file. 
 
You may modify the rossum.ini file as you see fit, but exercise caution in doing so.   The Java 
Properties syntax is very fussy.   It is case-sensitive and does not tolerate embedded white space 
characters.   All specifications must be completed in a single line. 
 

2.4.2 Overriding Properties  
The rossum.ini file also includes specifications for logging.   Typically, these are overridden by 
loading data from additional .ini files.   For example, suppose a client application wishes to use 
the specifications from a data file.   It could do so by invoking either the load() method from the 
Java Properties class, or the loadFromFile() method defined by RsProperties: 
 

RsProperties rsp = new RsProperties(); 
rsp.loadFromFile(“client.ini”); 
 

The loadFromFile method looks for files from either the current working directory or, if 
specified, from a fully qualified file pathname.   The example above was simplified a bit for 
purposes of clarity.   Consider what would happen if the “client.ini” properties file was not found 
or if it contained syntax errors.   Java would detect the error and throw an exception.  In order for 
the example code to compile, Java requires that it catch the exception from the loadFromFile() 
method: 
 

RsProperties rsp = new RsProperties(); 
 
try{ 
 rsp.loadFromFile(“client.ini”); 
}catch(RsPropertiesException e){ 
 System.err.println(“Error reading client.ini “+e.toString()); 
} 
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2.4.3 Loading RsProperties Files as a Resource 
The loadFromFile() example above reads properties from a file found in the “file path.”   The 
default file path is whatever directory you happen to be in when you launch Java.   An alternate 
file path may be specified through the argument to loadFromFile(). 
 
You may find it convenient to keep your properties files bundled up with your class files as a 
resource in the same manner as the rossum.ini file.   You can do so by using the RsProperties 
loadFromResource() method.   Pass the method an object belonging to a class defined in the 
same directory as your properties file.  RsProperties will use that object to obtain the path to the 
properties file. 
 

Example object   = new Example();       // an object is created 
RsProperties rsp = new RsProperties(); 

 
rsp.loadFromResource(object, “client.ini”);  // throws an RsPropertiesException 
 

 
In another variation, the example below creates extends RsProperties and load the specifications 
as part of the constructor: 
 

public class ExampleProperties extends RsProperties { 
 
 public ExampleProperties()   // the constructor 
 { 
  super();               // RsProperties is the “super class” 
        // super(); invokes its constructor 
  try { 
   loadFromResource(this, “client.ini”); 
  }catch(RsPropertiesException e){ 
   // handle this according to your own needs 
  } 
 } 
} 

  

2.4.4 Adding Custom Specifications 
Because the RsProperties class inherits all the functionality of the Java Properties class, 
client applications may add custom specifications to their own .ini files.  
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3 The Server 
The main Java application for Rossum’s Playhouse is named Server.   The RP1 Server is a multi-
threaded application that manages both the simulation functions and client communications.   
The server has an optional GUI that depicts the robot simulation as it navigates its virtual 
landscape.   In Revision 0.6x, the GUI is quite primitive and has potential for considerable 
refinement in future versions. 

Information about how to run the main server is provided in the release-notes file “readme.txt” 
which is included in the top-level directory of the software distribution. 

3.1 Server Properties Files 
Upon start up, the server reads two Java-style property files.   The first is the “rossum.ini” file 
that was discussed above.   From this file, it obtains the port specification for accepting TCP/IP 
connections (the host specification is irrelevant to the server).   It then reads the file “server.ini” 
which supplies server-specific settings as shown below. 
 

Table 5 – Properties Used by the Main Server 
 
Property Description 
floorPlanFileName Supplies the name of the floor-plan file (see below) which is to be 

used to specify the simulated environment. 
enableGUI Boolean (true or false) value indicating whether the GUI is to be 

presented.  Default value is true. 
enableNetworkClients By default, the simulator is configured to accept network connections 

by clients (or clients connecting from the local host using the systems 
network facilities).  If you are running dynamically loaded clients 
(see below), and do not need this capability you may suppress it.  
Doing so is useful on systems where network drivers are not 
installed. 

animationFrameRate 
(specified in frames-per-
second) 

The number of frames per second used for animation when the GUI is 
activated.   If you make this value too large, the motion will appear 
jerky.  If you make it too fine, the simulation will run slow due to the 
overhead of rendering the image.   Obviously, different values work 
on architectures with different Java graphics capabilities.  Default is 
20 frames per second. 

modelingFrameRate 
(specified in frames-per-
second) 

Many robot motion problems are modeled in terms of discrete 
intervals.   The modelingFrameRate provides a default value for the 
number of intervals per second which are used for modeling 
purposes.   Note that the period derived from the modelingFrameRate 
is a maximum value.   Under certain algorithmically determined 
conditions, the robot position and motion will be evaluated more 
often than specified by the modelingFrameRate 

simulationSpeed The simulationSpeed specification allows the simulation to be run in 
fast-forward or slow motion.   A value of 1.0 means that the 

 21



Property Description 
simulation will run in real time, 0.5 at half speed, 2.0 at twice normal 
speed, etc.  You may set this value as large as you please, but at a 
certain point performance is limited by the cost of the algorithms 
employed and the speed of the processor.  For faster-than-real time 
evaluation, it is recommended that the GUI be turned off.  Default 
value is 1.0. 
 

logFileName 
logVerbose 
logToSystemOut 

The name of a file (if any) to be used for logging the event data from 
the simulator.  Default value is RP1.log. The logVerbose setting 
controls whether verbose logging is turned on.   Verbosity is useful 
for debugging both client and simulation processes, but does degrade 
performance.   Default is false.  And logToSystemOut setting controls 
whether the output is sent to system error. Note that simultaneous 
logging to both a file and system console is allowed.   Default is false.
 

dlcEnabled 
dlcName 
dlcSetIO 
dlcSetLogger 

The RP1 simulator has the ability to load the class (binary) files for a 
client at run-time (dynamically) based on the name of the client class.   
If the boolean value dlcEnabled is set to true, it will search the 
CLASSPATH for a class with the name specified as the dlcName.   
By default, dlcEnabled is set to false.  When specified as true, the 
client name is mandatory. 

enableInterlock Enables the use of the "interlock" features.  Often useful when timing 
issues are confused by system scheduling and communications 
overhead, especially when running at a faster-than-real-time 
simulation speed. 

  
 

 
 

3.2 Accepting Clients 
The simulator accepts clients via TCP/IP connections as described above.   By design, the system 
should be able to accept multiple clients.   At present, it can accept multiple client connections, 
but does not correctly model the interactions between robots.  A complete implementation of this 
feature is planned. 
 

3.3 Dynamically Loading Clients 
When server is configured to dynamically load clients, it will do so shortly after startup.  In 
future releases, the RP1 GUI will provide a file-browser interface that allows you to find and 
load clients dynamically.   For now, the only way to specify clients is through the RP1.ini file 
(only a single client is supported at this time).    
 
You may optionally configure a dynamically loaded client to connect to the server through the 
network TCP/IP connections as described above.   If effect, this results in a program connecting 
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to itself.  A more efficient means of communication is to allow the server to establish an internal 
I/O connection for the client.   This option is controlled by the "dlcSetIO" specification in the 
RP1.ini file.   Letting the server set the I/O for a dynamically loaded client is recommended 
whenever possible. 
 
You may also configure a dynamically loaded client to write its logging information to the main 
server log using the dlcSetLogger option. 
 

3.4 Interlock 
The "interlock" option in RP1 provides a way of ensuring rigid synchronization between the 
simulator clock and its client applications.    This option is mainly intended for applications that 
are sensitive to timing issues. The interlock feature especially useful in cases where users the 
simulator is running at an accelerated clock rate (in which the simulator time moves more 
quickly than real time).  It will also be useful in cases where some of the client's operations 
require a very large, and time-consuming, amount of processing and occasionally prevent the 
client from keeping up with the simulator. 
 
To understand the rationale for the interlock option, consider a case where the simulator is set to 
run very quickly, perhaps 100 times faster than the real time clock.   At these speeds, the system 
overhead related to task management and inter-process communications has a substantial effect 
on the simulator. For example, suppose the server issues a "sensor/detection event" to which the 
client is supposed to respond with a "stop motion request."  If the simulator is free to run ahead, 
the real time delay due to system and communications overhead may result in several minutes of 
simulation time passing before the client ever responds... even though from the client's 
perspective it replied almost instantly. 
 
In the interlock mode, the simulation clock is suspended whenever the server sends an event to 
the client.  The clock is not re-started until the client process replies with an "interlock 
acknowledgement."   Both the RP1 Java and C/C++ client API's implement code so that the 
client does not respond with an acknowledgement until all event handlers related to the 
simulator-issued event have been invoked and have completed their operations.   Thus, we can 
ensure that all processing related to an event will be completed before the simulator is enabled to 
continue. 
 

3.4.1 Overhead Related to the Interlock Option 
Clearly, the selection of the interlock option means that more messages have to be sent between 
the client and the server.  This extra overhead is the main cost of using the interlock option.  
Recall that, because RP1 messages are generally quite small (less than 200 bytes), the major cost 
associated with communications is mainly the number of transactions exchanged, not the amount 
of data moved.  In general, though, the extra overhead for using interlock should be acceptable. 

 23



 

3.5 Internal Architecture 

3.5.1 The Threads 
One of the strengths of the Java language is the ease with which it can be used to code multi-
threaded applications. Table 6 lists the primary threads implemented in the RP1 server. 
 

Table 6 – Primary Threads in RP1 Server . 
 

Scheduler Thread The scheduler thread is the main simulation thread.   This thread 
creates the simulator’s virtual clock and also performs all the 
computation and modeling required to drive the simulation 

AWT Thread The AWT thread is launched by Java’s graphics environment, the 
Abstract Window Toolkit (AWT).  The implementation makes a 
very straight-forward use of the Java tools 

Client-Listener 
Thread 

The client-listener thread accepts connections from client 
applications, creates client objects and launches new client monitor 
threads.   Optionally, you may disable this thread if you are using 
Dynamically Loaded Clients. 

Client Threads The Client Thread services incoming communications from clients.   
Each client is assigned a unique thread. When network connections 
are enabled, Client Threads are launched by the Client-Listener 
Thread when a new client connection is accepted.  When 
Dynamically Loaded Clients (DLC's) are used, Client Threads are 
launched by the Scheduler Thread shortly after startup.3 

 
 
 

                                                 
3 Dynamically Loaded Clients are launched by a task which is added to the scheduler shortly after start up.  Future 
revisions of RP1 will feature a browser-style interface that will allow the user to launch a DLC interactively.   The 
class SimClientLauncherTask was designed with this use in mind. 
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3.5.2 The Scheduler 
The scheduler is the heart of the simulator.  Essentially, the scheduler implements a task queue 
not much different from a classic printer queue or batch-processing queue.   In the simulator, 
events are treated as tasks and kept in a list sorted by time.  The tasks are processed serially 
based on their time values.   Time is treated using floating-point values for intervals specified in 
seconds. 
 
Consider the following list which show the potential state of the queue at some time. 
 
 time 0.000 start robot motion for 10 seconds 
 time 0.100 evaluate robot position and disposition 
 time 0.200 evaluate 
 time 0.300 evaluate 
 time 0.301 halt-motion due to collision with wall. 
 
At time 0.000 the client requested a robot motion with a duration of 10 seconds.   The simulator 
determined that after just 0.301 seconds, the motion would result in a wall collision, and so 
scheduled a halt task at that time. It then queued up 5 tasks as shown in the table.  The spacing of 
1/10th second between tasks reflects the default modelingFrameRate of 10 frames-per-second 
(see above). 
 
As tasks are performed in sequence, the internal clock is adjusted to the time of the task.    In 
most cases, individual tasks require far less time than the interval allotted.   To simulate real-time 
behavior, the scheduler often introduces waits during which the scheduler is idle and other 
processes can be completed.   In situations where the simulator is instructed to run at faster than 
real time, the waits are shortened or removed entirely. 
 
At each evaluation, the simulator has the potential to send back information to the client (based 
on the results of the evaluation).   Suppose that at 0.200 seconds, a proximity sensor detected the 
wall and the client sent a motion-halt request to the simulator.   The client thread would create a 
task to perform a motion-halt operation and would place it at the head of the queue in a priority 
mode.   When the halt task was serviced, all remaining motion tasks would be removed from the 
queue causing the robot simulacrum to halt. 
 
The description of the task queue is algorithmic rather than practical.   Certain real-world 
considerations complicate it somewhat.   For example, at the default modelingFrameRate, a one-
minute motion requires 600 tasks.   Queuing up so many tasks is not a good use of memory or 
processor cycles.   This is especially true when the sequence might be cut short by a client 
request.   So, typically, the simulator queues up only one motion task at a time.   Motion task 
objects have the ability to “recycle” themselves so that they are placed back on the queue (with 
an adjusted time value) when they complete. 
 
The virtual clock is coupled to the passage of real time.   If a client or some other process 
requests the “simulation time” while the scheduler is resting between tasks, the scheduler will 
consult the system clock to derive a reasonable value. 
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Finally, a word on the Java thread scheduling mechanism.   Under Windows architectures, 
threads are allocated a 50 millisecond slice of time to perform various operations.   This 
approach has consequences for applications such as the simulator that depend on timing 
considerations.   For example, consider the case where the code execute two requests for the 
system time separated by a 5 millisecond wait: 
 

long time0, time1, deltaValue; 
time0      = System.currentTimeMillis();   // current time in milliseconds 
wait(5);                                   // wait 5 milliseconds 
time1      = System.currentTimeMillis(); 
deltaValue = time1-time0; 
 

The delta value for the times will probably be close to 50 milliseconds, rather than the 5 
milliseconds you might expect.   The reason for this is that when the wait is executed, control 
may be transferred to another thread.   Even though the 5-millisecond wait expires, as much as 
50 milliseconds may pass before the scheduler returns control to the waiting thread.  
 
Due to this scheduling mechanism, the simulator will often run at slower-than-real-time speeds 
when we chose modelingFrameRates of greater than 10 Hertz.   This is not necessarily a bad 
thing.  It does produce a more accurate model and also washes out some of the timing 
considerations due to the overhead for client-server communications.  
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3.6 The Floor Plan 
One of the first things the server does on start-up is to load data for the simulated environment.   
This data is stored in files called “floor plans.”   Floor plans include data describing the physical 
layout of walls and other features.   Floor plan data is encoded in text-files.   At start-up, the 
Server consults the simulation property file to obtain the name of the desired file.  It then reads 
and parses the data in that file to create a virtual landscape for modeling.   If the GUI option is 
enabled, the display will display a “plan view” of the exercise area similar to that shown in 
Figure 2. 
 
The floor plan shown in Figure 2 is from the sample file “WhiteRoom.txt” which is supplied as 
part of the Rev 0.6x RP1 software distribution. Figure 3 shows the code and specifications from 
which that floor plan file was generated. 
 

 

Figure 2 – Floor plan from WhiteRoom.txt example 
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/*  White Room 
 
Sample floor-plan file for Rossum's Playhouse 
This encoding is based on the RP1 rev 0.4 floor plan format. 
 
*/ 
 
 
units: meters; 
caption: “White Room (RP1 rev. 0.4)”; 
 
wall a { geometry:   0.0,   0.0,     3.0,   0.0,   0.05;  } 
wall b { geometry:   3.0,   0.0,     3.0,   3.0,   0.05;  } 
wall c { geometry:   3.0,   3.0,     0.0,   3.0,   0.05;  } 
wall d { geometry:   0.0,   3.0,     0.0,   0.0,   0.05;  } 
 
wall e { geometry:   1.0,   2.0,     2.0,   1.0,   0.025;} 
 
target goal { 
  label:     "Goal";   // F is for fire 
  geometry:   0.4, 0.4, 0.25; 
  lineColor:  red; 
  lineWidth:  3; 
} 
 
placement home { 
  label:     "Home"; 
  geometry:  2.5, 2.5, 225, 0.275; 
  lineColor:     green; 
  lineWidth: 3; 
} 
Figure 3 – Contents of "WhiteRoom.txt" floor-plan file. 

.1 Syntax and Semantics 
 specification of floor plans is based on an very simple grammar.   The grammar supports 
 kinds of statements: specifications and declarations.   Specifications are used to supply 
meters such as what system of units is to be used for the floor plan or what geometry is to be 

d for a particular object.   Declarations are used to create particular objects such as walls.  A 
cification is a simple statement given in the form: 

pecification:   parameter; 

pecification:   parameter[1], …, parameter[n]; 

le declarations have a more complex syntax: 

bjectClass  objectName { 
specification[1..n]; 
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and may contain one or more specifications.   Revision 0.60 supports seven kinds of object 
declarations: walls, obstacles, targets, placements, floor paint, and navigation nodes and 
navigation links. 

3.6.1.1 Specifications 
The general specifications in a floor plan (those not included in a declaration) tell something 
about the overall floor plan.  At present, two are supported:  caption and units. 
 
The caption specification allows you to specify a caption to be placed on the main frame 
(window) of the GUI. 
 
The units specification can be either meters, feet, or kilometers.   Internally, all units are 
converted to meters, but the system specified in the floor plan is used for display purposes.  The 
caption specification is used for labeling the main application window (Java frame).   No other 
general floor plan specifications are supported at this time. 
 

3.6.1.2 Declarations 
As mentioned above, declarations are used to define objects.  Different kinds of object 
declarations contain different specifications.  The following table lists the specifications that can 
be included in any kind of declaration. 
 

Table 7 – Specifications Used for All Types of Object Declarations. 

Specification Description 
fillColor For those objects which are depicted using filled-polygons, the fillColor 

can be used to specify the interior color.  Each object type has its own 
default value. 

lineColor Objects depicted using lines or text are drawn in the line color.  A filled-
polygon may also use this specification to indicate that it is to be depicted 
with a separate outline color. 

color The color specification sets both the fill and line colors and can be used 
whenever convenient 

label For objects which include a label, this specification indicates the string to 
be used.   

 
 

3.6.2 Walls 
In RP1, walls are simple barriers.   They are specified as a set of two endpoint coordinates and a 
wall thickness.   The following example shows a declaration for a wall: 
 

wall a { 
geometry:   0.0, 0.0,    98.0, 0.0,   0.75; 

} 

 

 29



The specifications for the wall geometry require 5 real-valued parameters.  They provide two-
coordinate pairs giving the end points and a value for the thickness of the wall in the order 
shown: 
 

x coordinate of first endpoint, 
y coordinate of first endpoint, 
x coordinate of second endpoint, 
y coordinate of second endpoint, 
thickness. 

 
All geometry parameters are assumed to be in the specified units system (by default, meters).   
 
If a robot simulacrum collides with a wall, all motion will be halted and an RsMotionHalted 
event will be sent to the client indicating the cause of the halt.  Robot simulacrums can detect 
walls using the range-sensor component included in the standard tool set. 
 

3.6.3 Obstacles 
Functionally, obstacles behave exactly as walls, except that they may have arbitrary shapes.  The 
RP1 floor plan format now permits the specification of an obstacle as shown in the example code 
fragment below: 
 

   obstacle ArbitraryName { 
        geometry:     0.0, 0.0,   1.0, 0.0,   0.5, 0.86; 
        offset:       1.0, 1.0; 
        orientation:  180; 
        color:        orange; 
   } 

 
The obstacle specification above describes the coordinates for an equilateral triangle positioned 
at offset (1.0, 1.0), and rotated 180 degrees. You may specify any number of coordinate pairs for 
the geometry as long as it describes a simple, non-self-intersecting polygon.    The offset and 
orientation specifications are optional and are intended mainly as a convenience. 
 
In place of the geometry specification, you may include a polygon specification: 

 
   obstacle AnotherArbitraryName { 
       polygon:  36, 1.0; 
   } 

 
The above declaration describes a 36-sided polygon of radius 1.0. The initial polygon is centered 
at (0.0, 0.0) but may be adjusted by supplying an offset.  The initial point is located on the x-axis 
at coordinate (1.0, 0); 
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3.6.4 Targets 
Targets are meant to model point sources of light or infrared radiation.   Essentially, they give 
the robot a point target that it can detect and identify.   The robot component objects include a 
“target sensor” which can be detect targets and generate sensor events (see “Communication via 
Events and Requests” above). 
 
The target geometry is specified as 
 

x coordinate of target, 
y coordinate of target, 
radius for surrounding circle (purely for human reference). 

 
Other specifications include a label, the color, and the thickness (width) of the line used to draw 
the surrounding circle. 
 
 

3.6.5 Placements 
A placement is used to supply a starting position and orientation for the robot simulation.   If 
desired, there can be more than one.  When the client program wishes to place the robot into the 
simulation environment, it issues a “request for placement” specifying the name of the placement 
(note that the object name is used, not the label string).   If no name is specified, a placement is 
chosen at random.   The server responds with an RsPlacementEvent giving the position and 
orientation of the robot.   The robot cannot otherwise detect or interact with placements. 
 
The placement geometry is specified as: 
 

x coordinate of center (robot placement position), 
y coordinate of center, 
orientation for robot (in degrees), 
approximate radius used to develop the “home-plate” style icon. 

 
 

3.6.6 Floor Paint 
The floor-paint feature allows you to create areas of colored polygons on the base of the floor 
plan.   Simulated robots may be equipped with sensors that allow them to detect floor paint when 
the sensor is positioned above it.   
 
Floor-paint geometry is specified exactly the same way as the geometry for the obstacle feature 
(see 3.6.3 above).   As with the obstacle feature you may create either an arbitrary non-self-
intersecting polygon using the "geometry" specification or a regular polygon of n-sides using 
the "polygon" specification.    An example paint declaration follows: 
 
 
 

 31



paint ArbitaryName { 
        geometry:     0.0, 0.0,   1.0, 0.0,   0.5, 0.86; 
        region:       1; 
        color:        blue; 

   } 
 
The color specification is strictly for depiction purposes.  The region code, however, can be used 
by the RP1 client application for a number of purposes.  It allows the user to mark the paint 
region as having a particular meaning.  When the simulator sends a paint-sensor event to the 
client application, it includes the region code in the event.  The client may then respond to the 
region code in whatever manner the developer deems appropriate.  For example, some sensors 
may be sensitive to some colors of paint while insensitive to others.  Since color is used only for 
depiction purposes, it is not available to the client.  To interpret color, however, the client may 
use the region code to determine how a sensor responds.   Alternatively, a client might need to 
treat the robot's behavior as being different in various regions of the simulator. The region code 
in the floor paint feature provides one way determining where the robot is and how it is to 
behave. 
 
 

3.6.7 Navigation Features: Nodes and Links 
The node and link features were introduced to RP1 in Rev. 0.48 as a way of allowing a floor-plan 
to specify a network of "roads and intersections."  The motivation for these features is to provide 
the user a  method of specifying data for navigation purposes. Because the layout of an RP1 
environment is arbitrary, some developers may require a method to specify a selection of 
pathways as part of their floor plan.  Such a specification can be provide through the use of the 
navigation features. 
 
While a navigation network is not appropriate for all applications4, some simulation clients may 
benefit from the ability to download a floor plan and dynamically constructing procedures for 
operating in their environment.  One such application,  the AutoPilot demo, is supplied with the 
standard RP1 Java source code distribution. Figure 4 below shows the floor plan for the Trinity 
College Fire-Fighting Home Robot Contest overlaid with a navigation network.  Although the 
network shown is inadequate for efficiently running the contest, it does illustrate the concept of 
"roads and intersections" modeled as a network of nodes and links. 
 
 

                                                 
4 A robot intended to explore and map its environment would have no use for a pre-determined navigation network. 
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Figure 4 – Trinity Contest Floor Plan with Navigation Network 

 
 
The following code fragment shows the specification of two nodes and a link that connects them: 
 

node n0           { geometry:  13.0, 11.0; label: "n0";  } 
node n1           { geometry:  40.0, 11.0; label: "n1";  } 
 
link p0  { nodes:    n0,   n1; } 

 
The geometry specification for each node is mandatory.  The label is optional.   A link connects 
exactly two nodes.  A node can be included in any number of links.   RP1 always renders links as 
line segments.  RP1 does not implement logic to determine if links intersect. 
 
At present, the RP1 API does not include a tool kit for manipulating or analyzing the navigation 
net.  Although the AutoPilot implements a limited, ad hoc., solution, it is far from the full-
featured, general-purpose tools available for network analysis. The navigation network provides 
a source of data.  Our hope is that in the future, Rossum Project developers will create tools for 
the analysis of that data. 
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3.6.8 A Mapping Tool for Developing Floor Plan Specifications 

When the Rossum Project was originally started, we hoped that eventually someone would write 
an interactive authoring tool for creating floor plans. Developing a floor plan using the text 
format specified by RP1 is tedious, at best. While no such work was ever completed, we are 
pleased to be able to report that a mapping tool has become available as part of another software 
initiative. Author Shane O'Sullivan has created a CAD-like tool called Map Viewer that makes it 
possible to construct floor plans quickly and easily. The Map Viewer application also includes 
support for alternate robot simulators such as CARMEN, Saphira, and Player/Stage. 
Shane developed Map Viewer to support his own robotics research and many of its features 
reflect that noble pedigree. For example, he includes functions for generating Voronoi diagrams 
from occupancy grids, generating a parameterized path using a modified A* algorithm, 
converting grid maps (images) to vector-based maps, etc. 

To learn more about Map View visit http://mapviewer.skynet.ie/ 
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4 Building a Virtual Robot 
 

4.1 Introduction 
In the Rossum’s Playhouse simulation environment, the way to build a virtual robot is to write a 
client application.   This section tells you how to do it. 
 
The point of Rossum’s Playhouse is to help the user to test logic that will eventually be 
integrated into an actual robot.   Naturally, doing so requires some method of configuring the 
simulated robot so that its characteristics follow those of the actual hardware being studied.   In 
the current revision, the information to do so is provided by the client.   Paragraph  4.7, The 
RsBody and RsBodyPart Classes, below describes the components that can be used to create a 
robot simulacrum. 
 
In the real world, building a robot isn't much fun unless you actually run the thing.  And in the 
simulation, a specification for a robot body is rather pointless until you build the logic that lets it 
play. This section also shows how to write code that enables your simulacrum to interact with its 
environment.   It does so by providing a tour of “ClientZero,” one of the two demonstration 
client applications that are provided with the RP1 software distribution.   ClientZero is a simple 
application that was written expressly for the purpose of providing an example for developers 
implementing a client.  

4.1.1 Thinking about Client Design 
Before we talk about the demonstration clients, we want to make an important point about client 
design in general. 
 
We think that the code for a well-designed client ought to have a life of its own, separate from 
the simulator.   We’ve already mentioned our hope that the code that you test on the simulator 
can be ported to an actual platform with little modification.   Even if your target is not actual 
hardware (perhaps you are writing a general-purpose navigation tool kit), you should strive to 
minimize dependencies on the simulator.5  The more successful you are at doing this, the more 
useful your code will be to yourself and to other developers. 
 
Of course, the means of accomplishing this goal are not at all obvious.  Certainly, there is no one 
“right” way to design a client application. Figure 5 below shows the broad outlines of an 
approach which may be useful.   The figure is purely conceptual, and does not illustrate any 
actual packages, classes, or libraries.  In the figure, the high-level logic that makes up the true 
"brains" of the robot/client is separated from direct dependency from both RP1 and its intended 
robot platform.   In the simulator version, it plugs into a block of interface code which handles 
issues specific to RP1.   In the robot-hardware version it plugs into a block of mid and low-level 
control logic.   The software for simulator interface and the control blocks are unique to their 
particular implementations. The high-level modules can be shared between both. 

                                                 
5 This may be the only time you ever hear a software vendor saying “whatever else, don’t lock yourself into our 
product.” 
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Figure 5 – Design Elements for Avoiding Code Dependency 
 
Incidentally, don't let the placement of the modules blocks in the diagram mislead you into 
assumptions about the flow of control through the system.   Although the high-level modules are 
positioned on top of the simulator-interface and mid-and-low-level  blocks in the diagram, it 
does not imply that they are actually running the robot.  Depending on your needs, you may want 
to treat them as subordinate functions and let the low-level functions "do the driving." 
 

4.2 The Demonstration Clients 
The two demonstration clients supplied with the RP1 software distribution are called ClientZero 
and DemoZero.   ClientZero is a very simple application that performs three basic operations: it 
connects to the server, it supplies a body definition, and then interacts with events received from 
the simulator.   It has no user interface, but does keep a log of its interactions with the server.   
All the source code for ClientZero is stored in the Java package rp1demo.clientzero (recall that a 
Java package corresponds directly to a system directory). 
 
DemoZero adds a Graphical User Interface (GUI) to ClientZero, but does not otherwise extend 
its functionality.   In fact, the DemoZero client is built on the ClientZero code.   It does not 
change the underlying logic of the “robot’s brains.”  It simply adds features (the GUI) that are 
useful to the user running a simulation.    
 
In doing so, it illustrates a point.   You may add things to your simulator (client) code that do not 
have to go into your target robot.   DemoZero piggybacks a GUI on top of the ClientZero control 
logic, but does not alter the ClientZero behavior.   Actual clients might extend their robot logic 
by adding user-controls, performance analysis, or better simulation logging.   Remember, 
though, that an important goal of the simulator is to be able to reuse the code that you test in the 
simulation environment in an actual platform.  The key to being able to do this is to separate 
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those components that are specific to the simulator from those which go into both the RP1 client 
and the real-world robot.   The DemoZero GUI does not interfere with the ClientZero logic, it 
simply provides the user with some auxiliary controls. 

4.3 Life Cycle of the Demonstration Clients 
Both demonstration clients follow the same life cycle: 
 

1. initialize its session with the server (establish network or local connection if necessary); 
2. send body plan to server; 
3. register relevant event handlers; 
4. enter an event-loop. 

 
In the first step, the RP1 client contacts the server and exchanges introductory information.   To 
do so, a client running as an independent client must make a network/local connection (see 
paragraph 2.4  Configuration Elements and Properties Files above).  A dynamically loaded 
client simply accepts the I/O streams provided by the server.    
 
In the second and third step, the client tells the server about the robot it wishes to model and then 
registers event handlers to manage the communications from the RP1 server (which come in the 
form of events, see paragraph 2.3.2 Communication via Events and Requests above).  It is 
necessary to send the body plan before registering event handlers because many of the events 
that come from the server depend on components of the virtual robot.    
 
Finally, the clients enter an event loop in which incoming communications are received, 
processed, and passed to the client-supplied event-handlers.   Events and event handlers are 
discussed in more detail in Section 5 below. 
 

Figure 6. below shows source code for a simplified version of ClnMain.java.   We will refer to it 
in the discussion that follows. 
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package rp1demo.clientzero; 
import  rp1.rossum.*; 
import  rp1.rossum.event.*; 
import  rp1.rossum.request.*; 
 
import java.lang.*; 
import java.io.*; 
 
public class ClnMain extends RsClient implements RsRunnable 
{ 
   public static void main(String args[]) throws IOException 
   { 
      ClnMain c = new ClnMain(); 
      c.initialize();   // throws IOException if unable to reach server 
      c.run(); 
   } 
 
   public ClnMain(){ 
      super(); 
   } 
 
  public void initialize() throws IOException { 
      // to connect to the server, invoke the initialize method from 
      // RsClient, the super class (parent class) of ClnMain 
      super.initialize(); 
 
      // create body and send its specification to server ------------------- 
      body = ClientZero.build(); 
      sendBodySpecification(body); 
 
      // register event handlers ----------------------------------------------- 
      addMouseClickEventHandler(new ClnMouseClickEventHandler(this)); 
      addPositionEventHandler(  new ClnPositionEventHandler(this)); 
 
      addPlacementEventHandler(   new ClnPlacementEventHandler(this)); 
      addMotionHaltedEventHandler(new ClnMotionHaltedEventHandler(this)); 
      addTargetSensorEventHandler( 
            (RsBodyTargetSensor)(body.getPartByName("head")), 
            new ClnTargetSensorEventHandler(this)); 
      addTargetSelectionEventHandler(new ClnTargetSelectionEventHandler(this)); 
      addTimeoutEventHandler(   new ClnTimeoutEventHandler(   this)); 
      addPlanEventHandler(      new ClnPlanEventHandler(      this)); 
 
      // send a request for a floor plan (used to make a navigation network) 
      sendPlanRequest(); 
 
      // request that the robot be placed on the floor. 
      sendPlacementRequest("home"); 
   } 

 
 

Figure 6 – Source Code for ClnMain (modified for clarity) 
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4.4 How ClnMain Extends RsClient and Implements RsRunnable 
When you examine the class definition for ClnMain, note the statement class ClnMain extends 
RsClient implements RsRunnable.   The ability of one class to extend another is a hallmark of 
object-oriented programming languages.   ClnMain extends a class RsClient which is defined in 
the java package rp1.rossum. In doing so, it inherits all the capabilities of RsClient 
So what is RsClient?   The RsClient class provides an RP1 client with its interface to the 
simulator environment.   In includes I/O channels, methods for encoding and decoding 
communications, registering event-handlers, and running the client side of the simulator session. 
Without some instance of an RsClient object, it would be quite difficult for a client to 
communicate with the server. 
 
And what about RsRunnable?  RsRunnable is an interface. In Java, an interface is a way of 
specifying that a class will implement a certain set of methods (functions).  If a class statement 
says that it will implement a particular interface, we know that those methods will be available 
for any instance of that class.   Armed with this knowledge, we can use any object of that class, 
or any object of any other class that implements that interface, interchangeably.6 
 
For example, the Java standard Runnable interface implements a method called run().  Because 
Java knows that any class which implements Runnable includes the run method, Java knows that 
such a class can be launched as a separate execution thread.    RsRunnable is simply an extension 
of the Java Runnable class.  In addition to run(), RsRunnable specifies a few other methods 
which permit any class that implements it to be treated as a dynamically loaded client (see 
paragraph  3.3, Dynamically Loading Clients). RsClient implements RsRunnable.   It was not 
strictly necessary to include the reference to RsRunnable in the declaration for ClnMain.    When 
ClnMain inherited the properties of its super class, RsClient, it also inherited any of the 
associated interfaces.  We included the "implements RsRunnable" in the declaration for clarity. 
 

4.4.1 The RsRunnable Interface 
To load a class as a Dynamically Loaded Client, the RP1 simulator requires that the class 
implement four methods.  At run time, these methods are invoked in the sequence shown in the 
table below:  
 

setInputOutputStream allows the server to bypass the network (socket) based 
communications by supplying I/O 

setLogger allows the server to supply log-keeping information to the client 
initialize tells the client to perform its main initializations;  if I/O is not set, 

the client should establish a connection to the server 
run from Java's Runnable interface, allows the client to be run as a 

separate thread;  this method is the main run-loop for the client. 
 
                                                 
6 If one of your class definitions specifies that it implements a certain methods, but you forget to include the method 
in the class, it will not compile.   Thus a Java interface ensures that a class does, in fact, implement all the methods it 
claims.  Of course, determining whether your methods actually work is beyond the scope of the compiler. 
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The RP1 server always invokes initialize and run, but can be configured to not invoke 
setInputOutputStream and setLogger.   In addition to the methods specified by the RsRunnable 
interface, RP1 also has a requirement about the constructor: 
 

constructor() RP1 always invokes a constructor which takes no arguments; 
when you build a Dynamically Loaded Client, make sure that 
you provide any necessary functionality within such a 
constructor. 

 
 
The methods defined by the RsRunnable interface are coded as follows: 
 

package rp1.rossum; 
 
public interface RsRunnable extends Runnable { 
   public void setInputOutputStreams(InputStream input, OutputStream output); 
   public void setLogger(RsLogInterface logger); 
   public void initialize() throws IOException; 
   public void run();   // actually inherited from java.lang.Runnable 
} 

 
 

4.4.2 Building RsRunnable and RsClient into ClnMain..    
When we implement an RP1 client, we need to ensure that it includes an instance of the RsClient 
class so that it may communicate with the server.   When we implemented ClnMain, we had two 
choices.   ClnMain could include RsClient object as an element, or it could inherit all the 
capabilities of RsClient by extending it. 
 
In earlier version of the demonstration software, ClnMain actually did include an object of class 
RsClient.  In the present implementation, it ClnMain extends RsClient.   This use of a derived-
class follows one of the elegant conventions of object-oriented programming.  By extending 
RsClient, ClnMain inherits all the methods and elements RsClient.  Thus, ClnMain can use all 
the functions and capabilities of the parent class as if they were its own.   The approach saves 
coding and provides a convenient framework for our client implementation. 
 
So why didn't we implement ClnMain as a derived class of RsClient in earlier versions of the 
demonstration?   Well, in earlier versions, we were concerned that by deriving ClnMain from 
RsClient, the example code would give a false emphasis to the importance of the Rossum 
environment in building robot software.   We thought that if we implemented our main class so 
that it was "just a derived class of a Rossum fixture" that it would suggest that any client 
implementation is hard-wired into the RP1 environment.   One of the recurring themes in this 
document is that your robots are more important than our simulation.   In our own robotics work, 
we are careful to separate the code need to write so that we can work with the simulator from 
that which we need for our robots.   Ideally, simulator-interface code like ClnMain should not 
contain any code related to the real problem of implementing a robot.  
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4.4.3 DemoMain Implements RsRunnable, But Does Not Extend RsClient 
Earlier, we mentioned the DemoZero application that piggybacks a GUI onto ClientZero.   Like 
ClnMain, the DemoMain class implements the RsRunnable interface.   It does not, however, 
extend RsClient (nor does it extend ClnMain, though that would have been an elegant way to 
implement it).   We wrote it as a non-derived class to illustrate the fact that extending RsClient is 
not the only way to implement a class that can run as a Dynamically Loaded Client.    
 
Instead of extending RsClient, DemoMain contains an object of type RsClient that it uses for its 
communication with the server.   To satisfy the RsRunnable interface, it provides simple "pass 
through" methods.  The source code for DemoMain is shown below.   Note that an object of type 
ClnMain (called "client") is used to support the connection to the RP1 simulator. 
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package rp1demo.demozero; 
import  rp1demo.clientzero.*; 
import  rp1.rossum.*; 
import  rp1.rossum.event.*; 
import  rp1.rossum.request.*; 

 
public class DemoMain implements RsRunnable 
{ 
   ClnMain  client; 
 
   // implement a main to allow this class to serve as an Application ----- 
   public static void main(String args[]) throws IOException { 
      DemoMain demo = new DemoMain(); 
      demo.initialize();   // throws IOException if unable to reach server 
      demo.run(); 
   } 

 
   public DemoMain(){ 
      client = new ClnMain(); 
   } 
 
   public void setInputOutputStreams(InputStream input, OutputStream output){ 
      client.setInputOutputStreams(input, output); 
   } 
    
   public void setLogger(RsLogInterface logger){ 
      client.setLogger(logger); 
   } 
    
   public void initialize () throws IOException { 
      client.initialize(); 
 
      DemoFrame  demoFrame = new DemoFrame(client); 
      demoFrame.show(); 
 

  client.setProtocolShutdownHandler( 
           new    DemoProtocolShutdownHandler(demoFrame)); 
 
      client.addMotionStartedEventHandler( 
          new DemoMotionStartedEventHandler(demoFrame)); 
      client.addMotionHaltedEventHandler( 
          new DemoMotionHaltedEventHandler(demoFrame)); 
      client.addPositionEventHandler( 
          new DemoPositionEventHandler(demoFrame)); 
      client.addTimeoutEventHandler( 
          new DemoTimeoutEventHandler(client)); 
      client.addPlacementEventHandler( 
          new DemoPlacementEventHandler(demoFrame)); 
      client.addTargetSensorEventHandler( 
         (RsBodyTargetSensor)(client.getBody().getPartByName("head")), 
         new DemoTargetSensorEventHandler(demoFrame)); 
 
      client.sendTimeoutRequest(1000); 
   } 
    
   public void run(){ 
      client.run(); 
   } 
}  

Figure 7 – Source code for DemoMain.java 
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4.4.4 The Execution of ClnMain 
Anyway, ClnMain inherits all the features of RsClient.   RsClient itself, implements RsRunnable. 
We included the statement "implements RsRunnable" in the declaration as a reminder that the 
interface was part of the class.  Since RsClient already includes all the methods in the 
RsRunnable interface, we don't have to bother with them except where we have special needs. 
 
The first method defined by the class ClnMain is a static main().   This method is a standard Java 
technique that allows you to launch ClnMain as an application by typing: 
 

java rp1.clientzero.ClnMain 
 

at the command line.7    Referring to the code, note that the main() method creates an instance of 
an object of type ClnMain (by using the Java keyword "new"), and then invokes the initialize() 
method that ClnMain inherited from its super class RsClient.   The RsClient.initialize() method is 
provided as a convenient way of initializing a connection with the server. 
 
When ClnMain is launched from the command line (or a script, or a Windows .bat file), it runs 
as a separate program from the RP1 simulator.   Java invokes the main() method, which in turn 
invokes the initialize() method that ClnMain inherited from RsClient.  The RsClient.initialize() 
method recognizes that it does not have a connection to the server and sets out to establish one.   
If it fails (as when the RP1 server is not running), it will throw an IOException, in this case 
terminating the program.   RsClient.initialize()  also loads the properties file for ClnMain (which 
is included in the clientzero package).  If the properties files specifies that it should do so, 
initialize() opens up a log file. 
 
After the initialize() method is completed, ClnMain.main() invokes run().   The run method, 
which is inherited from RsClient() transfer control to an event-loop, is which the client receives 
communications (events) from the server and uses them to invoke event-handlers.  Control does 
not return from the event-loop until the connection with the server fails (as when the server shuts 
down) or when the application is terminated. 
 
When ClnMain is treated as a dynamically loaded client, the main method is not used.   Instead, 
RP1 loads the ClnMain class and creates an instance of that class (creates an object).   It then 
uses that object to invoke the methods that were specified in the RsRunnable interface.    The 
first of these, setInputOutputStreams() tells the client object that it does not need to establish I/O.  
The second, setLogger() suppresses the usual logging for the client and redirects it to the main 
simulator log.8   Once these preliminaries are complete, it invokes the object's initialize() 
method.   The initialize() method that ClnMain inherited from RsClient is smart enough to check 
whether I/O and logging have been specified and to use them rather than attempting to set up its 
own functions. 
   

                                                 
7 Applets, which are launched from a Browser, behave slightly differently than Applications which are launched 
directly from the system or command line. 
8 Both setInputOutputStreams() and setLogger() can be suppressed using configuration elements in the RP1.ini 
properties file.   This feature is intended for testing purposes (so that a dynamically loaded client can exercise its 
ability to establish a network connection, or so that it may be configured to keep an independent log file). 
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4.4.5 Uploading the Body Plan 
Once the connection is established, the next thing the client needs to do is to give the server a 
physical description of kind of robot it will be modeling.   It does so by creating and uploading a 
body plan.   For demo purposes, the body plan is created using a static method in the class 
ClientZero. 
 
The RP1 rossum package defines a class called RsBody that is used by the simulator to model 
the robot body.   The RsBody class provides an easy way for defining and transmitting a body 
plan to the simulator.  This approach has another advantage in that some of the logic that the 
simulator uses also has value in client applications.   We will get into the details of the body plan 
later on when we look at the ClientZero class.   For now, it is worth noting that ClientZero 
implements a round body with a target sensor at its front. 

4.4.6 Registering Event Handlers 
The RsClient class, which is used by ClnMain, allows applications to run in an “event loop” 
which allows them to communicate with the server. 
 
Event loops are a very common feature in many graphics environments.   Developers who have 
had experience with Unix and X-windows will recognize the origins of the RP1 concept 
immediately.   Those who have worked with the Java AWT will see a similar parallel with the 
ideas of “event listeners” and the Java graphics thread (which is a kind of event loop). 
 
Of course, a robot control system is not the same thing as a computer graphics application.  But 
the event-loop concept used in many graphics applications turns out to be quite adaptable to 
other purposes.   As you examine the code for clientzero, you will see how this is accomplished.    
 
To use the event loop, clients register “event handlers” which are methods (or “functions”) that 
are invoked when the client receives an event (message) from the server.   Once ClnMain 
invokes the RsClient.run() method, it enters an endless loop in which RsClient receives messages 
from the simulator/server and invokes the methods that were registered by the client application. 
Recall that the client communicates to the server by sending it “request” messages and that the 
server responds by sending the client “event” messages.   An event might be something like “the 
robot hit a wall,” or “the robot’s sensor detected a light source,” or “a timer expired.”   When 
these event messages are received, any registered event handlers are invoked 
 
Clients may register event handlers at any time.  The ClnMain.java function registers most of 
them before it enters the event-loop, but only because it is convenient to do so.   It is also 
possible to register multiple event handlers for any event.    The Demo application which is also 
included in the RP1 software distribution adds a GUI to the Client application by simply 
piggybacking additional event handlers to those already registered by ClnMain. 
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4.4.6.1 Multiple Event Handlers and the RsEvent.consume() Method 
When multiple handlers are registered for a particular event, they are invoked in the order in 
which they were registered.   Sometimes, it is useful for one event handler to be able to prevent 
the event from being passed on to other event handlers.   It may do so by invoking the consume() 
method of the current event.   

4.4.7 Running the Event Loop 
Once the ClnMain.initialize() method registers event handlers, it sends the RP1 simulator a 
request for a placement on the floor plan.   Up until the time the simulator receives the request, 
the robot is not visible on the display.    Once RP1 receives and processes the request, it places 
the robot simulacrum on the floor plan and issues a placement event. 
 
ClnMain will not process the incomming events until it enters its event-loop.   The event-loop is 
embodied in the RsClient.run() method.  Since ClnMain extends RsClient, it inherits that 
method. The run() method implements an endless loop in which incoming events are processed 
and the corresponding event handlers are invoked.   The choice of the name “run()” for the 
event-loop method in RsClient is not an accident. It allows client applications to take advantage 
of Java’s multi-threading (multi-tasking) feature.  
 

4.5 How the Demo Clients Work 
The demonstration clients take advantage of a feature of the simulator that has no counterpart in 
the world or real robotics: the mouse click event.   For demonstration purposes, the mouse click 
is used to tell the robot where to go.   When you point the mouse in front of the robot and click 
the left button, the robot will move toward the position you indicate.   If you point the mouse 
somewhere else, and click the right button, the robot will turn to face the indicated direction. 
 
Referring back to the code for ClnMain, note that the first event-handler statement 
 

addMouseClickEventHandler(new ClnMouseClickEventHandler(this)); 
 

establishes a mouse-click event handler.    ClnMouseClickEventHandler extends the class 
RsMouseClickHandler which is included in the rossum package.   When you click the mouse 
button, the Server sends an event message to any clients that have registered event handlers of 
mouse clicks.   ClientZero responds by performing some simple navigation computations and 
moving toward the click point.. 
 
ClientZero is not especially smart.   It will go where you direct it and eventually may crash into a 
wall.   When this happens, its motion will be halted and the server will issue an 
RsMotionHaltedEvent..    Motion-halted events are handled by ClnMotionHaltedEventHandler 
which extends RsMotionHaltedEventHandler. 

 
addMotionHaltedEventHandler(new ClnMotionHaltedEventHandler(this)); 

 
As you navigate the robot simulacrum, you may eventually read a point where it detects a target.  
When that happens, the Server will send an RsTargetSensorEvent to registered clients.  The 
specification for the target sensor event is a little more complicated than other event handlers.  
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Because a robot can have multiple sensors, you can register multiple sensor-event handlers.  To 
do so, you have to be able to tell the simulator which sensor is associated with which handler.   
 
The RP1 simulator allows you to name body parts when you create them.   In ClientZero, we 
assigned the name “head” to the forward-looking target sensor on the robot.   So when we 
register a target sensor for the robot, we included it in the specifications. 
 

addTargetSensorEventHandler( 
   (RsBodyTargetSensor)(getBody().getPartByName(“head”)), 
    ClnTargetSensorEventHandler(this)); 

 
Two other event handlers are established by ClnMain.initialize(): a position-event handler and a 
placement-event handler.   We’ll talk about the placement handler first.  The placement handler 
is used to establish a starting position for the robot when we run a simulation.   The event is 
generated on request, and only by request.   Note that the last statement in ClnMain.initialize() is 
 

sendPlacementRequest(“home”); 
 

When the Server receives a placement request, it cancels all robot motions and moves it to the 
named placement.   The placement also specifies orientation for the robot.  The example floor 
plan contains only a single placement feature, though any number can be included.  Upon 
placement, an RsPlacementEvent is sent to the client.  The placement event contains fields 
giving the position and orientation for the robot. 
 
The other event handler is a request for position.   RP1 allows you to obtain the position and 
orientation of the robot simulacrum at any time.   ClientZero uses this data for navigation 
purposes.  When you send it a mouse-click event, the mouse-click handler issues a position 
request.  When the position event is sent, the client uses it to compute a path to the mouse-click 
position. 
 
Frankly, using position events for navigation is cheating. Real robots seldom have the means to 
query for their exact position. ClientZero is an extremely simple-minded implementation and 
uses position data to keep the amount of code in the demo to a minimum.   The position event 
does, however, have legitimate uses for testing purposes.   It can be used as a way of evaluating 
navigation logic by providing a baseline of true position for comparison with dead-reckoned or 
computed position.  Or it can be used to drive position display elements in a GUI.  Many of the 
RsEvents include position-related data fields for this purpose.  
 

4.6 Physical Layout of ClientZero 
The body plan for ClientZero is established using a method defined in the Java class file 
“ClientZero.java” which is part of the clientzero package.   Referring back to the code for 
ClnMain.java in Figure 6. above, note the statement 
 

RsBody body = ClientZero.build(); 
 

It produces a simple robot body plan that appears as shown in Figure 8. below. 
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Figure 8 – ClientZero Body Plan 

The blue, rectangular element on the front of the robot is a target sensor.  The dark rectangles 
within its body are wheels.   The design for ClientZero is deliberately simple and cartoon-like.  
In particular, the wheels are much thicker than might be found on an actual robot.9  It is possible 
to code more realistic depictions. 
 
The code for ClientZero.build() is shown on the page below.  Note that build() is a static method.  
  
A static method can be invoked from a code without ever instantiating the class that defines 
them.   The build() method returns an object of type RsBody.   Objects of class ClientZero need 
not be instantiated and would be of no value if they were. 

                                                 
9 Thicker wheels provide better traction and stability, but tend to degrade accuracy when computing position during 
turns if you are using wheel position for dead-reckoning. 
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package rp1demo.clientzero; 
import rp1.rossum.*;   // note: event and request aren’t required for this module 
import java.awt.Color; 
 
public class ClientZero 

  { 
   public static RsBody  build(){ 
   RsBody body = new RsBody(“ClientZero”); 
 
   double trackWidth       = 0.18; 
   double driveWheelRadius = 0.075; 
   RsDifferentialSteering wheelSystem = 
           new RsDifferentialSteering(trackWidth, driveWheelRadius); 
 
   double tireWidth  = 0.03; 
   wheelSystem.addDefaultWheels(driveWheelRadius, tireWidth); 
 
   wheelSystem.setFillColor(Color.darkGray); 
   wheelSystem.setLineColor(Color.darkGray); 
 
 
   RsBodyCircle chassis = new RsBodyCircle(0.0, 0.0, 0.15); // 0.3 meters across 
   chassis.setName(“main chassis”); 
   chassis.setFillColor(Color.lightGray); 
   chassis.setLineColor(Color.darkGray); 
   body.addPart(chassis); 
 
   double  d1[] = { 
      0.09, -0.025, 
      0.16, -0.025, 
      0.16,  0.025, 
      0.09,  0.025 
   }; 
 
   RsBodySensor s1 = new RsBodyTargetSensor( 
      d1, 4, 
      0.16, 0.0, 0.0, 
      45*Math.PI/180.0, 1.0, 
      3, 3); 
   s1.setName(“head”); 
   s1.setFillColor(Color.blue); 
   s1.setLineColor(Color.blue); 
   body.addPart(s1); 
 
   body.addPart(wheelSystem); 
   return body; 

   } 
} 

 

Figure 9 – Source Code for ClientZero 
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4.7 The RsBody and RsBodyPart Classes 
This paragraph uses some of the terminology from the Java language and object-oriented 
programming in general.   If you are unfamiliar with these terms, you may want to review 
paragraph 1.6, A Very Quick Introduction to Java, before proceeding. 
 
Referring to Figure 9, note that the ClientZero.build() method returns an object of type RsBody.   
RsBody objects act as containers which hold objects of classes derived from RsBodyPart.   There 
are a variety of different kinds of body parts, including sensors, wheel actuators, and shapes 
corresponding to physical components (such as chassis, housings, etc.).  These are added to the 
body using calls to the RsBody.addPart() method. 
 
Body parts are rendered in the order they are added to the body. So if two parts overlap, the last 
one added will be drawn on top of the first.   In ClientZero.build(), the wheel system is defined 
early on.  Note, though, that it is not added until the very end.   Thus the wheels are drawn on top 
of other graphical elements in the robot depiction.  In your own robot definitions, you might 
prefer to hide or partially occlude the wheels by adding them first. 
 
The geometry of the body parts is specified using a Cartesian coordinate system with the origin 
at a reference point defined as “the center of the robot body.”   The robot’s “forward vector” is 
defined as the x-axis.   When the wheel actuators are added to the robot body, their axle is 
assumed to be centered on the origin and aligned with the y-axis. 
 
Body parts may be assigned two color values for rendering, the fill color (applies to polygonal 
forms only) and the line color. The line color may be used to add a contrasting edge to polygonal 
features.  Even if you prefer not to add a contrasting edge, you may want to specify a line color 
with the same value as the fill color.    
 
By default, both the line and fill color values are defined to be Color.lightGray.  You may adjust 
this value by using the methods: 
 

RsBodyPart.setFillColor(Color c);    // Color from java.awt.Color class; 
RsBodyPart.setLineColor(Color c); 

 
If you prefer not to render a particular feature you may suppress them by using the setFillColor() 
and setLineColor() methods to assign null color values.  Note that the specification of a null 
color does not affect the interactive characteristics of a body part. 
 
Recall that in Java, the definition of classes is hierarchical.  Figure 10 shows that both the 
RsBody and RsBodyPart classes are derived from the RsComponent class. The arrow notation is 
used in class diagrams to show inheritance.  Remember that a class always “points to the class 
from which it was derived.”   
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Figure 10 – Inheritence for RsBody and RsBodyPart Classes 
 
The RsComponent class is of interest only from a Java programming point of view.  It provides a 
method for cloning (duplicating) objects which is inherited by RsBody, RsBodyPart and all 
classes derived from RsBodyPart.  The clone() methods are used internally by the RP1 simulator.  
The RsComponent class also implements two Java interfaces, Cloneable and Serializable.  These 
interfaces are important to Java coding.  If they are unfamiliar to you than you need not be 
concerned with them at this time. 
 
The RsBodyPart class is super class to three major classes as shown in Figure 11 below. 

RsComponent RsBody 

RsBodyPart 

RsBodyPart RsBodyArt 

RsBodyShape 

RsWheelSystem

 

 

 

 

 

 

 

 

Figure 11 – Subclasses of RsBodyPart 

4.7.1 RsBodyArt 
RsBodyArt is a partially implemented class.  Eventually, it will provide a way of adding 
decorative elements (lines and polygons) to the robot depiction.   These elements will be coupled 
to the robot body, but will be non-interactive.   They might include lettering or markings 
intended to enhance the depiction of the robot without affect the modeling of its interactions with 
its environment.   
  
An object of class RsBodyArt will not interact with walls or similar objects. 
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4.7.2 RsBodyShape 
The RsBodyShape class is the super class for all physically interactive body parts,    Most of the 
visible components of the robot are derived from RsBodyShape.  These include all passive 
components, such as the chassis or any housing elements, as well as active components such as 
sensors.  All objects of classes derived from RsBodyShape will interact with walls, resulting in 
collision events if contact occurs.   
 
The RsBodyShape allows you to create an arbitrary simple polygon for depiction and modeling 
(the polygon topologically simple… that is to say “not self-intersecting”).  Because the 
RsBodyShape class derives from RsBodyPart, you may specify both a line and a fill color for 
depiction purposes. 
 
One popular design element for smaller robots such as the Rug Warrior is a circular body plan.   
The RsBodyCircle class extends RsBodyShape by providing a constructor which allows you to 
specify the body part using a center and radius rather than a multi-point polygon.   RsBodyCircle 
also overrides the standard paint method defined in RsBodyShape and invokes Java’s circle-
drawing calls directly in order to create a more pleasing depiction of a circle. 
  
The sensor classes, extend the functionality of RsBodyShape by adding new methods and data 
elements.   These are discussed below. 
 
The constructor for the RsBodyShape class is given below: 
 

public RsBodyShape(double []point, int nPoint) 

 

Coordinates defining the shape of the body are given in the robot’s coordinate system. The point 
array specifies points as follows: 

point[0] x coordinate of 1st point 
point[1] y coordinate of 1st point 
point[2] x coordinate of 2nd point 
point[3] y coordinate of 3rd point 
    . 
    . 
    . 
etc. 
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4.7.3 RsWheelSystem and derived classes 
The RsWheelSystem and its derived classes are used to model the behavior the wheel actuator 
for the simulated robot.  RsWheelSystem is the base class for a number of existing and planned 
classes that are intended to model different kinds of robot locomotion systems including those 
shown in Table 8.  
 

Table 8 – Actual and proposed wheel system classes 
 
Class Implemented Description 
RsDifferentialSteering Yes Simulates the classic differential steering system. 
RsAckermanSteering Yes Represents an automobile-style steering system. 
RsOmniDrive Planned Represents an omni-directional system 
 
In the present implementation, two kinds of actuators are available to model robot motion: 
Ackerman steering and differential steering. The Ackerman steering implementation represents, 
at a very abstract level, a steering system to that used in an automobile.  Direction of motion is 
controlled by the adjustment of steering wheels. The differential steering implementation models 
a wheelchair-like locomotion system in which two independently controlled and powered wheels 
are mounted perpendicular to a common axis and direction is controlled by varying their speeds. 
Steering is accomplished by varying the speeds of the wheels.  When both wheels turn at the 
same speed, the robot travels straight.  When the right wheel turns faster than the left, the robot 
steers toward the left, and visa versa.  When the wheels turn at different, but fixed, speeds, the 
robot steers a circular path.  If the two wheels turn at the same speed but in opposite directions, 
the robot can execute a pivot.  In real-world implementations, additional wheels, usually free 
turning casters, are provided for support. In larger, heavier robots, more than one additional 
wheel may be supplied, but some small robots actually use a skid or even a simple dowel with a 
rounded end for support.  The Rossum Project website at 
http://rossum.sourceforge.net/papers/DiffSteer/ provides a detailed discussion of the kinematics 
for a differential steering system. 
 

Because it is an abstract class, the RsWheelSystem is never instantiated directly. Instead, a wheel 
system is created by instantiating an object of one of the derived classes, such as 
RsDiffentialSteering.  

 
public class RsDifferential extends RsWheelSystem 
{ 
   // constructors 

 
   public RsDifferentialSteering( 
      double wheelTrackWidth, 
      double driveWheelRadius); 
} 
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4.7.3.1 Adding Wheels 
By default, the wheels associated with a wheel system are not depicted. If you wish wheels, you 
have to add them to the wheel system using its addWheel method. As a convenience, each wheel 
system derived class implements a method called addDefaultWheels. An example of this was 
included in the sample code in Figure 9 right after the initial declaration of the wheel system. 

4.7.3.2 Motion Control 
At present, the motion models supported by RP1 are extremely limited. They are based strictly 
on kinematics and do not attempt to account for dynamics. In fact, the current implementation 
even ignores the problem of acceleration, assuming that when a simulated robot makes changes 
in velocity, it does so instantaneously. In future revisions, we hope to introduce specifications for 
acceleration to the RP1 client API. 
 
Different locomotion systems use different control paramters. Consult the Javadoc based API 
documentation for more information on the motion control for the RsDifferentialSteering and 
RsAckermanSteering classes.  See also the discussion of Motion Requests in paragraph 5.3. 
 

4.7.3.3 Limits to Realism in Motion Modeling 
Even when the RP1 models are improved, the will only represent actual robot behaviors in a very 
abstract sense. The real world is an interesting place. Accurately modeling the dynamics of a 
real-world robot requires a great deal of data about the robot’s construction and the physical 
conditions under which it operates, as well as sophisticated analysis of that information. 
Mechanical devices are noisy systems often difficult to predict and prone to seemingly random 
error. In the idealized world of the RP1 simulation, things are much simpler.   RP1 assumes 
perfect traction, timing and control of the wheels.  Batteries do not wear down. Motors do not 
overheat. Error factors are not introduced to the model. If desired, developers writing client 
applications can introduce their own error factors (applying their own special knowledge of the 
particular behavior of the system they are modeling).    
 

4.7.3.4 Wheel and Path Calculations 
Clearly, the path followed by the robot is dependent on the geometry of the wheels (wheel base, 
tire radius, etc.) and the velocity at which they turn.   These specifications are contained in 
objects of the RsWheelSystem and its derived classes.  So it is not surprising that 
RsWheelSystem also provides methods for navigation and specifying robot control requests. 
 
Two useful methods for performing computations are: 
 

public RsMotionRequest getMotionRequest( 
boolean useStepMethod, 
double x, double y, double speed); 

 
public RsMotionRequest getMotionRequestForPivot( 

boolean useStepMethod,  
double x, double y, double speed); 
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These methods general objects of the RsMotionRequest class.  Request classes are discussed 
below.  RP1 clients use the motion-request class to instruct the robot simulacrum to rotate its 
wheels.  The getMotionRequest() method returns an RsMotionRequest that will put the robot on 
a path to the specified (x,y) coordinates.  The getMotionRequestForPivot() returns a request 
which instructs the robot to face the specified coordiantes.    
 
The coordinates (x,y) in these method calls are given relative to the robots current position and 
orientation.  They refer to the “center point” of the robot that is defined when its body is 
specified. So a coordinate of (x,y) = (1.0, 0.0) would indicate a point 1 meter directly in front of 
the robots center point.  A coordinate of (x,y) = (0.707, 0.707) indicates a point 45 degrees to the 
front and left of the robot.   Note that a coordinate specification of (-1.0, 0) would result in the 
robot backing up. 
 
The speed value in the getMotionRequest() method describe is the requested speed as measured 
at the robot’s center point.  Speed is given in meters per second.  It should always be a positive 
value.   In the motion that results from a call to the getMotionRequestForPivot() method, the 
robot pivots and its center point does not move.  In this call, the speed value refers to the speed 
of a point located at the center of either wheel hub.   The wheels for a robot with a 1-meter track 
width (the distance between wheels) will have to travel 3.14 meters in order for the robot to 
make a complete 360° pivot.  To complete such a motion in 1 second, you would have to specify 
a pivot speed of 3.14 meters/second. 
 
You may study the code in RsWheelSystem.java for more details.  Again, the existing model 
assumes fixed speeds and does not treat acceleration.10 
 

4.7.4 RsBodyPainter 
The RsBodyPainter class allows you to create a robot that can leave a “paint trail” on the floor of 
the simulation environment. This feature allows an application to show the path of the robot as it 
moves about the simulated environment. It is useful both for analyzing the robot’s behavior or 
producing robot-generated artwork. For example, it might be used in a vacuum-cleaning robot 
simulation to show the coverage pattern for a particular algorithm. 

The RsBodyPainter class extends the RsBodyShape class, but implements additional methods for 
defining paint-related attributes. The robot body plan may include any number of painters. 
The constructor follows the general pattern of the RsBodyShape constructor discussed above: 

   public RsBodyPainter(double []bodyPoints, int nPoints) 

 
Once you have created an object of type RsBodyPainter, you may set the various painting 
specifications using the following accessor methods: 
 

public void setTrailerPosition(double x, double y) 
public void setTrailerWidth(double width) 
public void setPaintColor(Color color) 
public void setPaintRegionCode(int code) 

                                                 
10 When acceleration models are implemented, getMotionRequest methods with additional arguments for 
acceleration and initial velocities will be added. 
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public void    setTrailerMinimumSegmentLength(double minLength) 
public boolean getPainterActivationStatus() 

 
 
 
The trailer-position setting gives the position of a point on the robot’s body at which the paint 
trail is generated. Parameters are set in the robot’s coordinate system. The trailer width is the 
width of the paint line that the painter lays down as it travels. By default, the robot draws a zero-
width line (the standard thin line in the Java graphics environment), but if you wish you may 
specify a thicker setting. 
 
Note that the setTrailerWidth accepts a floating-point value giving the line thickness for the 
trailer in meters. Some users have wondered why the line width is set in meters rather than in 
pixels as it is in most graphics environments. Even though the real-valued, width-in-meters, 
specification may seem counterintuitive there are two important reasons why it is preferred. The 
first is that it will scale in proportion to other objects in the simulation environment if you re-size 
the simulator GUI. Therefore, having a real-valued width specification is useful for ensuring a 
consistent visual presentation. The second reason for using metric-valued specifications is that 
the concept of objects having an actual physical size is fundamental to the design of the RP1 
simulation (and any other robot simulator that is even vaguely realistic). 
 
The painter is activated through calls to request methods (see paragraph 5 Events and Requests 
below) once the robot body plan is uploaded to the simulator. Two methods are provides: 
 

sendPainterActivationRequest(RsBodyPainter painter) 
sendPainterDeactivationRequest(RsBodyPainter painter) 
 

Paint settings can me set at any time in the simulation.  The activation request enables painting, 
and the deactivate request deactivates painting. If you wish, you may change painter parameters 
(color, width, position) at any time by calling the appropriate accessor methods. These changes 
are uploaded to the simulator when a painter activation request is transmitted. Thus, an 
application could switch paint colors by sending the initial activation request, setting a new paint 
color, and then sending an additional painter activation request. The getPainterActivationStatus 
method is provided for convenience and allows an application to query the body part for its 
current activation status.  
 
The setTrailerMinimumSegmentLength method sets an important parameter and it should be 
used with care. It controls the minimum spacing between points used to record the robot’s paint 
path in memory. By default, it is two centimeters. If you make the setting too small, you 
application could generate too many points and overwhelm the simulation environment. If you 
make it too large, your paint trail will appear as a number of rather long, low-resolution 
segments. An optimal selection of segment length would take into account the robot’s size and 
anticipated rate of travel. A home robot that travels at 1 meter per second would have a much 
smaller trailer segment length than an automobile-scale robot that travels at 100 kilometers per 
hour. For robots intended for use in inside environments, the default 2 cm setting is probably 
adequate. 
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As of release 0.60, the setPaintRegionCode method was not implemented. Eventually, it will 
allows a client application to set the region values used by the floor paint objects and 
RsPaintSensor classes (see paragraph  3.6.6 Floor Paint). When implemented, a client with a 
floor-paint sensor will be able to detect paint deposited by other robots. 
 

 

4.7.5 The Sensor Classes 
The RP1 simulator does not attempt to model specific sensors.   In the real world, there are a vast 
number of different kinds of sensory apparatus, with many different operating parameters.  An 
attempt to model even a fraction of the devices available would be futile. Instead, RP1 provides 
models for highly abstract sensors.  Client applications can use the data provided by the abstract 
sensors as inputs into their own models.  This approach puts the ability to simulate the behavior 
of real sensors into the hands of the client developer (who probably knows more about the 
specifics of his system than some guy writing a simulator would anyhow). 
 
The abstract sensors include the following: 
 

Target Sensor a sensor that detects point objects, such as visible light or infrared 
sources; 

 
Contact Sensor a “bumper” sensor that detects physical contact with walls 
 
Range Sensor a sensor that detects the range to walls, the resolution of this sensor 

can be adjusted so that it behaves as a “proximity sensor.” 
 
Paint Sensor a sensor that can detect "floor paint" features. 

 
The sensors classes all derive from the RsBodySensor class which in turn derives from the 
RsBodyShapeClass as shown in Figure 12. below. 
 
 
 

RsBodyTargetSensor 

RsBodyContactSensor 

RsBodyRangeSensor 

RsBodySensorRsBodyShape 
 
  
 
 
 
 
 
 
 
 

Figure 12 – Derivation of Sensor Classes 
 

 56



RsBodySensor also adds the notion of a “state” to the body part.  Sensors are said to be either 
“hot” or “cold” depending on whether they have a detection or not.   If you run either of the 
ClientZero demo applications, you will note that the sensor on the front of the robot changes 
from blue to bright orange when it “goes hot” (encounters a detection).   The RsBodySensor 
class adds two color-related methods to the RsBodyPart class: 
 
 

RsBodySensor.setHotFillColor(Color c); 
RsBodySensor.setHotLineColor(Color c); 

 
If you examine the code for ClientZero.java in Figure 9. above, you will note that these methods 
were used as part of the sensor definition. 
  

4.7.5.1 Obtaining State Data of a Sensor 
Each of the sensor classes provided by RP1 has a number unique parameters describing its state.  
The particulars of these parameters are described below in the paragraphs dealing with individual 
sensor classess.  RP1 communicates these values to a client application in the form of a “sensor 
event.” 
 
Sensor events are generated whenever a sensor changes state.   Of course, there are certain 
sensors such as a range sensor (which measures distance) which change state pretty much 
continuously as the robot moves.   To prevent the simulator from bogging down with an 
overwhelming number of events, sensors can be assigned “resolution values” (discrete intervals 
for which state changes will be reported). 
 
Sensor can also be generated at any time that the client application sends a “sensor request” to 
the server (a feature which can used to simulate a sensor-polling system). 
 

4.7.6 RsBodyTargetSensor 
The RsBodyTargetSensor, which was mentioned above, is used to detect objects of the RsTarget 
class.  RsTarget objects are single-point features that can be added to the simulator’s floor plan.  
They can be used to model visible light or infrared sources.    
 
The constructor for the RsBodyTargetSensor is shown below: 
 

public RsBodyTargetSensor( 
      double [] point, 
      int    nPoint, 
      double xDetector, double yDetector, 
      double sightAngle, 
      double width, 
      double maxRange, 
      int    nWidthBin, 
      int    nRangeBin 
   ) 

 
The specifications for the RsBodyTargetSensor constructor are as follows: 
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point, nPoint the physical geometry of the sensor, used for collision and 

depiction modeling; 
 
xDetector, yDetector the location of the “focal point” of the sensor;  even if the sensor to 

be modeled is not actually optical in nature, a focal point is used as 
a conceptual element; 

 
sightAngle the orientation of the central axis of the target sensor;  the sensor 

can point in any direction that you please;  if the sensor is omni-
directional, this value will be set to zero; 

 
width again, an optical analogy: width describes an angle of view in 

which a point feature can be detected; 
 
maxRange the maximum range at which a target can be detected; 
 
nWidthBin the angle of view is treated as divided into a number of discrete 
 bins;  each time a target point moves from bin-to-bin, it is 

considered a “state change” and a sensor event is generated; 
 
nRangeBin analogous to the width bin, used for range. 
 
 

As noted above, when a sensor changes state, the simulator generates a sensor event.  Client 
applications can apply their own enhanced models to the data in the sensor event.  For example, 
if you were measuring an IR source with a real-world device, you might expect a drop in 
sensitivity as the source moved away from the detector axis.   A dim source, which could be 
detected at a range of one meter when the sensor was pointed directly at the target, might not 
register when the sensor was turned slightly.   Your client application could add this level of 
enhanced modeling based on specific knowledge of the devices you were using. 
 
The fields provided in the RsTargetSensorEvent are described in the section on events below. 
 
 
 

4.7.7 RsBodyContactSensor 
The RsBodyContactSensor is used to model pressure-sensitive contact sensors.  Typically 
contact sensors are mounted on bumpers on the outermost edges of a robot chassis.   The 
RsBodyContactSensor has two states: detection and no-detection.   When a robot simulacrum 
begins a motion, any contact sensors are set to the no-detection state.  If any contact sensors were 
previously activated, and thus undergo a state change, an RsContactSensorEvent will be issued 
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with its status field set to false (no-detection).11  If a collision occurs at the end of a motion, 
contact-sensor events will be issued for any sensors that are activated. 

 
The constructor for a contact sensor is shown below: 
 

public class RsBodyContactSensor extends RsBodySensor { 
   public RsBodyContactSensor( 
     double []point, 
     int nPoint 
   ) 
 

As you can see, the definition of a contact sensor is a simple closed polygon. 

 

4.7.8 RsBodyRangeSensor 
Many robots include either range or proximity sensors which allow them to detect objects at a 
distance.  Typically, such devices are based infrared or sonar emitter/detector apparatus though 
more exotic (and expensive) laser-based systems are also available.  Both range and proximity 
(that is, very-close-range) sensors can be modeled using the RsBodyRangeSensor class.  The 
constructor for this class is shown below: 

public RsBodyRangeSensor( 
   double []point, 
   int nPoint, 
   double xDetector, double yDetector, 
   double sightAngle, 
   double maxRange, 
   int    nRangeBin 

   ) 
 
 

Data elements include the following: 

xDetector, yDetector position of the detector relative to the robot origin 
sightAngle  direction of the central axis for the detector 
maxRange  maximum range at which the sensor can detect and object 
nRangeBin  resolution of the sensor, divides the maxRange into number of bins. 
 
Since most of the elements of the range-sensor are similar to those of the target sensor described 
above. they will not be reviewed here. 
 

4.7.9 RsBodyPaintSensor  
The paint sensor works in conjunction with the floor-paint feature described in paragraph 3.6.6 
above.  It provides a way of simulating a variety of real-world sensors and functions.  For 
example, one popular technique in mobile robotics is to equip a robot with a LED and optical 
sensor device that allows it to follow a track on the floor (such robots are sometimes called "line-
                                                 
11 Not all motion requests will result in a contact-sensor status change.  For example, if the robot has driven into a 
wall, a request for a forward motion will just press the robot against the wall harder.  No movement will occur, so no  
sensor state change will result. 
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followers").  In the RP1 simulation, such a track could be represented using floor paint with the 
robot using an RsBodyPaintSensor to detect it.    
 
Of course, the RP1 paint sensor doesn't necessarily have to model a real-world equivalent.  For 
example, imaging that you wished to implement areas of "slippery floors" where the robot would 
lose traction.   Although RP1 itself does not provide this capability, it could be implemented by 
placing a paint sensor near the each wheel and implementing code on the client side to adjust the 
robot's trajectory accordingly. 
 
The paint sensor is modeled as a single detection point.  As is the case with all RP1 sensors, it 
can be optionally be assigned a polygon to be used for depiction purposes or modeling collisions. 
 
The general declaration for a paint sensor is 
 

public RsBodyPaintSensor( 
      double []point, 
      int      nPoint, 
      double  _xDetector, 
      double  _yDetector 
   ) 

 
The array point and corresponding element count nPoint,  indicate the geometry of the sensor. 
The coordinate pair (xDetector, yDetector) indicates the position of the sensor.  
 
Additionally, the paint sensor features two methods for specifying the sensor's sensitivity to floor 
paint features with different region values as described in 3.6.6.  These are: 
 

public void setRegionSensitivity(int region); 
public void setRegionSensitivity(int []region); 
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5 Events and Requests 
Events and requests were introduced in paragraph  2.3.2 Communication via Events and 
Requests above. As mentioned in the preceding sections, once an RP1 client connects to the 
server and exchanges introductory data, communication between the RP1 server and its client 
applications is accomplished through the use of what the system calls events and requests. 
Events are messages sent to the client when something happens in the simulation environment 
(the robot collides with a wall, a sensor detects an object, a timeout period expires, etc.). 
Requests are messages sent to the client by the application when it wants something to happen 
(the robot is to move forward at some speed, a timeout event is desired, etc.).  
 
Recall that the fundamental entity in Java is the “class” (see paragraph 1.6 A Very Quick 
Introduction to Java above).  RP1 implements classes for each kind of event and request that are 
to be exchanged between the client and server. All RP1 event classes derive from the base class 
RsEvent. All RP1 request classes derive from the base class RsRequest. In general, the code for 
client applications makes extensive use of RP1 events. On the other hand, the RP1 client API 
handles most requests internally and only a few are actually exposed to the client code. All RP1 
event classes are defined in the Java package rp1.rossum.event and requests classes are defined 
in the Java package rp1.rossum.request. 
 
 

5.1 Interacting with the Simulator Through Events and Requests 
Events and requests are all exchanged between the client and the server through the agencies of 
the RsClient object that is established when the client first connects with the server. For example, 
when the client application first wishes to place its robot body in the simulation environment, it 
sends a placement request as shown in the code fragment below: 
 

RsClient myClient;    // assume the connection was previously established 
 
myClient.sendPlacementRequest(“$random”); 

 
In this case, the client requests that the simulator assign its robot to a random position 
somewhere in the simulated environment. When this happens, the simulator will issue a 
placement event and send it back to the client. The RsClient object will automatically receive the 
placement event, but in order for the client to actually do anything with the event, it will have to 
have registered an object known as an event handler with the simulator. 

5.1.1 Event Handlers 
An RP1 event handler is a class which implements a method called process that can operate on 
the event when it is received. For example, if there is some action that a robot application must 
do when it receives a placement event, then it would create an object with the appropriate 
behavior and register it with the RsClient connection. Examples of such statements appear in 
Figure 6 and Figure 7 and elsewhere in this document. Once the event handler is registered, 
RsClient will invoke the process method when the message is received.  
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The definition of event handlers is actually quite simple. Figure 13 shows the source code for the 
RsPlacementEventHandler and the RsTimeoutEventHandler. Note that these event handlers are 
not implemented as Java classes, but rather as Java interfaces. All that means is that any class 
that is intended to act as an event handler must implement the method declared within the 
interface definition. In this case, it means that a class that is to act as an 
RsPlacementEventHandler must implement a method called “process” that takes an 
RsPlacementEvent as an argument. A similar rule applies for an RsTimeoutEventHandler. An 
example of an event handler implementation is shown in Figure 14. Note the use of the Java 
keyword “implements” in the class declaration. In Java, a class can implement as many 
interfaces as desired. So if the developer wished, the class shown in Figure 14 could perform 
double duty as, for example, a timeout event handler. It could do so by implementing a second 
method called process that operated on timeout events (Java permits classes to overload methods, 
specifying multiple methods with the same name, provided they operate on different arguments). 
In general, however, most developers find it easier to code one event handler per class. 
 

package rp1.rossum.event; 
 
interface RsPlacementEventHandler extends RsEventHandler  { 
   public void process(RsPlacementEvent event); 
} 
 
interface RsTimeoutEventHandler extends RsEventHandler  { 
   public void process(RsTimeoutEvent event); 
} 

Figure 13 – RP1 source code for RsPlacementEventHandler 
 
 

package aTypicalPackage; 
import rp1.rossum.event.RsPlacementEventHandler; 
import rp1.rossum.event.RsPlacementEvent; 
 
public class ATypicalClass implements RsPlacementEventHandler { 
   public void process(RsPlacementEvent placement){ 
      System.err.println(“received placement at “+placement.name()); 
   } 
} 

Figure 14 – A typical event handler implementation 
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All RP1 events are defined as classes in the package rp1.rossum.event. Since they all derive from 
RsEvent, they all carry at least one common element, the simulation time, which is defined in the 
base class. Some, of the event classes, RsSensorEvent, serve as super classes to special 
subgroups of classes. The best place to read about the individual event classes is in the API 
documentation (Javadoc) for RP1. 
 

5.1.2 Requests 
There are a number of requests defined in the package rp1.rossum.request. In most cases, 
however, a RP1 client does not have to actually instantiate requests, but simply invokes them 
through a call to a method in RsClient.  We’ve already discussed how the client could send a 
request for robot placement by invoking the sendPlacementRequest implemented by RsClient. 
Similar methods exist for all requests supported by RP1. Although RsRequestHandler interfaces 
are defined in the RP1 code, they are strictly the concern of the simulator itself and need not be 
considered when implementing client applications. Again, the best place to read about the 
individual request classes is in the API documentation (Javadoc) for RP1. 
 
 

5.2 Placement Requests and Events 
The placement request is used to obtain an initial position and orientation for the robot in the 
simulated environment.   The robot can be positioned only at specific positions called 
“placements” which are specified in the floor plan (see paragraph 3.6.5 above).   When a 
placement request is issued, the client indicates the desired placement by name.   
 
 

5.2.1 Random Placements 
The RP1 server also provides two methods for obtaining "random" placements.  First,  if the 
floor plan includes multiple placements, the client application may specify that it wishes to 
choose one of them at random.   To do, it needs only specify a blank or null placement name.   
Additionally, the client may specify that it wishes for the robot to be placed at a random position 
within the floor plan by specifying the special placement name "$random". 
 

5.2.2 Initializing a Placement 
The robot simulacrum does not exist in the simulated landscape until a placement request is 
received and processed.  Any request for wheel movement of other robot-specific events will be 
ignored until a placement has been obtained.   If the graphics option is selected, the robot will 
become visible as soon as the placement request is processed. 
 

public class RsPlacementRequest extends RsRequest 
{ 
   // constructors 
   public RsPlacementRequest(String _name); 
} 
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public class RsPlacementEvent extends RsEvent 
{ 
   // constructors 
   public RsPlacementEvent( 
      long    _simTime, 
      boolean _valid, 
      String  _name, 
      double  _x, double  _y, double  _orientation); 
 
   // elements 
   public final String  name; 
   public final boolean valid; 
   public final double  x, y;          // in meters 
   public final double  orientation;   // in radians 
} 
 

5.2.3 Valid and Invalid Placements 
The element “valid” in the RsPlacementEvent indicates whether the robot could successfully be 
situated at the placements specified in the RsPlacementRequest.  Placement requests may fail if: 
 
1. A name is supplied in the request which does not match a placement in the floor plan. 
2. The robot would not fit in the specified placement because it would overlap a wall or 

obstacle. 
3. The random placement function could not find an open space in which the robot would fit 

without overlapping a wall or obstacle. 
 

5.3 Motion  

5.3.1 Motion Requests 

5.3.1.1 Starting a motion 
Once the client has obtained a placement, it becomes possible to move it around the simulated 
environment.   There are two ways to initiate a motion, through an RsMotionRequest or through 
an RsActuatorControlRequest.  The RsClient class allows a client to convey these request to the 
simulator through calls to its sendMotionRequest and sendActuatorControlRequest methods. The 
RsMotionRequest request allows the client application to specify an arbitrary motion based on a 
linear travel velocity and turn rate without considering the actuator control parameters necessary 
to achieve those behaviors. For example, if you wished the robot to travel a straight path at a 
fixed velocity, you could specify an RsMotionRequest with a non-zero linearVelocity and a zero 
rotationalVelocity The constructor for an RsMotionRequest is shown below: 
 

public class RsMotionRequest extends RsRequest 
{ 
   // constructors 

      public RsMotionRequest( 
         double linearVelocity,  
         double rotationalVelocity, 
         double durationSeconds); 

} 
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An actuator control request allows the client application to control the motion behavior by setting 
actuator controls. Actuator control requests are usually not instantiated directly (though there is 
nothing to prevent an application from doing so), but rather instantiated by using a creation 
method in the corresponding actuator class. For example, to control the wheel velocities of a 
differential steering system, you could use a method from the RsDifferentialSteering class as 
shown below: 
 

RsDifferentialSteering steeringActuator; 
 
RsActuatorControlRequest acr = 
   steeringActuator.getControlRequestForWheelRotation( 
  leftRotationalVelocity, 
           rightRotationalVelocity); 

 
 
Different steering mechanisms have different capabilities. For example, an Ackerman steering 
system (an automobile-style system) cannot execute a pivot. Thus classes derived from 
RsWheelSystem (see paragraph 4.7.3) implement specialized methods for creating valid motion 
requests based on the system the represent. Code examples for these methods are included in 
ClientZero and other demo applications.  Even if the methods provided are not adequate for your 
needs, it may be useful to review the code before writing your own.  
 

5.3.1.2 Halting a motion 
A motion sequence may be terminated early by sending an RsHaltRequest.  Typically, an 
application does not instantiate RsHaltRequest directly, by uses the sendHaltMotionRequest 
method provided by RsClient: 
 

public synchronized sendHaltMotionRequest(); 

 

5.3.2 Motion Events 
Motion events are issued at the beginning of a movement and at its termination.  The 
RsMotionStartedEvent and RsMotionHaltedEvent classes are shown below. 
 

 
public class RsMotionStartedEvent extends RsEvent 
{ 
   public final double linearVelocity;     // meters/sec 
   public final double rotationalVelocity; // radians/sec 
   public final double duration;  // in seconds 

 
      // initial position data 

   public final double x; 
   public final double y; 
   public final double orientation; 
} 
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public class RsMotionHaltedEvent extends RsEvent 
{ 
   // data elements 
   public final int    causeOfHalt; 
   public final double x, y; 
   public final double orientation; 
 
   // integer codes for causeOfHalt field  
   public static final int    HALTED_ON_COMPLETION=0; 
   public static final int    HALTED_ON_REQUEST=1; 
   public static final int    HALTED_ON_COLLISION=2; 
} 

 
Note that the RsMotionStartedEvent includes the parameters from the RsMotionRequest that 
caused it.   It also provides “cheating” elements giving the position, orientation, and velocities of 
the robot at the start of the motion.   These elements are convenient for validating your 
navigation calculations and driving a user interface.     The RsMotionHaltedEvent includes an 
integer element, causeOfHalt, that tells the reason for the halt: 
 
 completion the motion is completed without incident; 
 

request the client issues an RsHaltRequest or an RsMotionRequest before it has 
time to complete the current motion sequence; 

 
 collision the client collides with a wall. 
 
 
 

5.4 Timing Events 
The RP1 simulator currently supports two events related to timing: heart-beat events and time-
out events.   The RsHeartbeatEvent is issued periodically at a user-specified interval of time.  
The RsTimeoutEvent is issued once, after a user-specified interval of time has elapsed. 
 
It is important to note that the RP1 timing events are based on simulation time, not the real-time 
clock.   If the simulation speed is set to 1.0, simulation time will correspond closely to real time, 
but it will not be an exact match.   Issues such as system process scheduling and communications 
overhead can degrade both the precision and the accuracy of the timing interval. 
 

5.4.1 RsHeartbeatEvent 
The RsHeartbeatEvent is a very simple event that is issued only on request by a client 
application. An initial request starts the heart beat, resulting in a sequence of events being issued 
by the server at fixed intervals of simulation time (specified in seconds).   The heat beat will 
continue until cancelled by the client. 
 
One common use of the RsHeartbeatEvent is to drive a clock display in a GUI or to model a  
sensor-polling implementation.   The selection of time interval is arbitrary, but only one 
heartbeat can be initiated at a time. 
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The RsClient methods related to heartbeat events are: 
 

 
public synchronized void addHeartbeatEventHandler(RsHeartbeatEventHandler); 
public synchronized void removeHeartbeatEventHandler(); 
 
public synchronized void sendHeartbeatRequest(double seconds); 
public synchronized void sendHeartbeatCancellationRequest(); 
 

 

5.4.1.1 A Caution about Heartbeat Backlogs 
There is a danger in using the RsHeartbeatEvent.    When a client application activates the 
heartbeat, events are issued whether the client is processing them or not.   The events are, of 
course, intercepted by the RsClient event loop (its “run()” method).  If RsClient has transferred 
control to an event handler which has bogged down, it will stop reading event messages from the 
Server-communications socket.   Events can back up.   Initially, event backlogs remain local to 
the client and only degrade the timing relationship between events and the real-time clock.   A 
sever backlog can propagate to the Server (when the client’s socket buffers fill up) and actually 
interfere with the operations of the simulator itself.    
 
It is unlikely that an active client will result in backlogs of such a degree that they affect the 
Server.  The system is, however, vulnerable to a situation in which a client requests a small-
interval heartbeat and then becomes hung up in an infinite loop or other blocking condition. 
  
The heartbeat is a low-priority event.   A heart-beat scheduled for time T, will not be issued until 
all other events scheduled for time T have been sent to the client. 
 

5.4.2 RsTimeoutEvent 
The RsTimeoutEvent provides a mechanism for client applications to request that the simulator 
send it an event after some specified delay.   The timeout period is specified in seconds.   A delay 
of zero can be used as a mechanism for requesting the simulation time. 
 
The timeout event is a only little more complicated than the heart beat event.  In addition to the 
simTime field, it also includes the field called the “timeout Index.” 
 

public RsTimeoutEvent(double simTime, int timeoutIndex); 
 

The timeout index is used to allow an application to correlate a timeout event with the request 
that generated it.   Suppose, for example, that you wished your client application to perform a 
certain action when a timeout expired, but that other parts of the application had also requested 
timeouts.   Since RsClient only supports a single set of timeout event handlers, all registered 
handlers are invoked when a event comes in.    By noting the timeout index returned by the 
RsClient method sendTimeoutRequest, and comparing that index to the timeoutIndex field of the 
timeout event when it is received, your application can determine if the event is the one that is 
intended for a particular module. 
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The RsClient methods related to timeout event handlers are: 
 

public synchronized void addTimeoutEventHandler(RsTimeoutEventHandler); 
public synchronized void removeTimeoutEventHandler(); 
public synchronized int  sendTimeoutRequest(double timeoutPeriod); 
 
 

 
 

5.5 Sensor Events 
Sensor events are, naturally, coupled to specific sensors.   The identity of the sensor which 
generated the event is often critical to modeling it correctly. RsSensorEvent serves as the parent 
class for all other sensor classes and introduces the element sensorID which allows you to 
identify the body part associated with the event. 
 

public abstract class RsSensorEvent extends RsEvent 
{ 

      // constructors 
      public RsSensorEvent(long _simTime, int _sensorID); 

 
   // elements 
   public final int sensorID; 
} 

 
The sensorID can be used with the method RsBody.getSensorByID() to get the sensor object 
associated with the event. 
 
When event handlers are added for sensors, a reference to a specific sensor object is always part 
of the specification.  For example, RsClient includes the following declaration for the target 
sensor: 
 

public synchronized void addTargetSensorEventHandler( 
      RsBodyTargetSensor sensor, RsTargetSensorEventHandler reference); 
 

Suppose that your robot client featured two independent target sensors with much different 
characteristics (one was a visible light sensor, the other detected IR).  You could specify 
different event handlers for each.   Alternatively, if you had two sensors with similar 
characteristics, you might prefer specify the same handler for both and then decide which sensor 
generated the event using the sensorID element of the event object. 
 

5.5.1 The RsTargetSensorEvent  
The target sensor is used to detect the presence of a target point in the RP1 simulator.  It does not 
correspond to any real-world sensor but provides data that can be used to model the behavior of 
an actual device. 
 
To understand how the RsTargetSensor works, it is convenient to think of it as a flashlight.  The 
light beam has a width and a range.   If it sweeps a target point (an RsTarget object in the 
simulation floor plan), it experiences a “detection.”   A detection event leads to the simulator 
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issuing an RsTargetSensorEvent.   In fact, any change in the sensor’s state produces a sensor 
event.  So if it acquires a target, or loses it, an event will be issued. 
 
The position of the detection is relative to the sensor’s position and orientation and is given as a 
range and bearing.  In paragraph 4.7.6, which introduced the RsBodyTargetSensor class, we 
mentioned that the sensor’s beam can be divided into a number of angular sections and range 
bins.  When the target point moves from one section or bin to another, the movement results in a 
state change.   As we noted, any sensor state change generates an RsTargetSensorEvent.   
Therefore, it is important not to specify too fine a resolution for these values.  If you do, even the 
slightest movement of the robot will result in a flood of events, which will bog down the 
simulation. 
 
  
The RsTargetSensorEvent includes a couple of fields which would not be available from a real 
sensor: absolute position (x, y) of the sensor and a unit vector (ux, uy) giving the line-of-sight 
direction.  These elements are for diagnostic or human-interface purposes.  Using the diagnostic 
elements as part of a client application's navigation logic is cheating. 

 
 
public class RsTargetSensorEvent extends RsSensorEvent 
{ 

    public final double   x, y; 
    public final double   ux, uy; 

public final boolean  status; 
public final double   range, bearing; 
public final double   xDetection, yDetection; 

} 

 
Detection range is measured in meters.  Detection bearing is measured in radians, counter-
clockwise from the central axis.   To avoid confusion, note that the bearing behaves differently 
than the traditional compass bearing (which would be measured clockwise, in degrees, from the 
central axis). 
 
 

x, y The current position of the sensor’s “focal point” (see 
section 4.7.6), mapped according to the simulacrum’s 
current position and orientation.  Note that these values are 
“cheating fields” and are defined only when status is true. 
 

ux, uy A  unit vector giving central axis (line-of-sight)  of the 
sensor, mapping according to the simulacrum’s current 
position and orientation.  Note that these values are 
cheating fields and are defined only when status is true.  
 

status Sensor status (true when there is a detection). 
 

range, bearing Range and bearing of target relative to the sensor’s central 
axis. 

xDetection, yDetection bearing*cos(range), bearing*sin(range), respectively 
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5.5.1.1 Computing Target Position from an RsTargetSensorEvent 
The target-sensor event includes “cheating fields” that allow you to compute the absolute 
position of the target.  In a real-world application, you would have to resolve the actual position 
based on information about the robot’s position and knowledge of its physical layout.   Using the 
cheating fields, you may compute the absolute position using the following calculation: 
 

 given RsTargetSensorEvent e: 
 

 x = e.x + e.xDetection*e.ux - e.yDetection*event.uy; 
 y = e.y + e.xDetection*e.uy + e.yDetection*event.ux; 

 
For this calculation, we use the adjusted central-axis vector as the basis vectors for a rotated 
coordinate system with rotated x-axis (e.ux, e.uy) and rotated y-axis (-e.uy, e.ux).   We then 
multiply each vector by the coordinate in the direction x (e.xDetection) and the coordinate in the 
direction y (e.yDetection).   We could also have used range and bearing for these calculations. 
 
 
 

5.5.2 The RsContactSensorEvent 
The contact sensor event is issued in response to a state change for a contact sensor.  Contact 
events occur only at the beginning of a motion (if the pressure on a sensor is released) and at the 
end (if the motion results in a collision).  The RsContactSensorEvent class adds only a single 
field, “status,” to those defined by its parent class RsSensorEvent. 
 

 
public class RsContactSensorEvent extends RsSensorEvent{ 
   public final boolean status;     // true when contact is made 
} 

 

5.5.3 The RsRangeSensorEvent 
The RsRangeSensorEvent is issued when a range sensor undergoes a state change.  Of course, 
when a robot is in motion, its range relative to nearby objects changes continuously.  As in the 
case of the target sensor, the range sensor implements a resolution scheme to prevent an 
excessive number of state changes.  The resolution is specified using the nRangeBin parameter.  
The fields included in an RsRangeSensorEvent are shown below: 

 
public class RsRangeSensorEvent extends RsSensorEvent{ 
   public final double  x, y; 
   public final double  ux, uy; 
   public final boolean status; 
   public final double  range;   // valid only if there’s a detection 
} 
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The coordinate pairs (x,y) and (ux,uy), give the absolute position of the sensor and a unit vector 
indicating its orientation.   The absolution position of the detection point can be computed using 
the formulae 
 
 ax = x + range*ux; 

ay = y + range*uy; 
 
where (ax,ay) are the desired coordinates.   These values are not usually available from real-
world sensors and are provided only for diagnostic and user-interface purposes. 
 
 
 

5.5.4 The RsPaintSensorEvent 
The RsPaintSensorEvent is issued when a paint sensor experiences a state-change.  Recall that 
the sensitivity of paint sensors can optionally be restricted to paint features with specific region 
codes.  The fields included in a paint-sensor event are shown in the code fragment below.  Note 
that the x and y coordinates shown in the fragment specify the position of the detection.  As 
usual, we note that these values are not usually available from real-world sensors and are 
provided for diagnostic and user-interface purposes. 
 

public RsPaintSensorEvent( 
      long    simTime, 
      int     sensorID, 
      double  x, 
      double  y, 
      boolean status, 
      int     region) 

 

5.6 Adding Realism by Filtering and Intercepting Events 
The RP1 simulator’s ability to model real-world components and behaviors is limited.  As a 
developer, you know far more about how your robot performs than the simulator does.  One 
useful technique for adding realism to the system is to implement an event handler that intercepts 
an event, modifies it according to your needs, and then either consumes the event (to prevent it 
from reaching other event handlers) or invokes alternate event handlers.   As long as your filter 
event handler is the first one registered, it will be the first one called. 
 
To improve on the simulation capabilities available to your client, you may add noise, 
randomness, or more realistic behaviors to your application.   One technique is to insert a block 
of adapter code between your client logic and the RsClient-based interface.   Such an adapter 
block can also be used to make the Rossum API look more like the actual hardware on which 
your robot logic is to run. 
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Figure 15 – Adapting an RP1 Interface to Add Realism, Randomness, and Noise 
 
 
Note that you cannot alter the fields in an event (they are declared as “public final”).  To change 
event parameters, simply create a new event by invoking the appropriate constructor.  If you 
have registered multiple event handlers, be sure to call the consume method for the current event 
to prevent it from being processed by any remaining handlers. 
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Appendix A.  Migrating Client Applications from Revision 0.50 to 0.60 
 
 
 
The changes to the RP1 API that were introduced for Release 0.60 will render some code written 
to earlier versions incompatible and, in fact, unable to compile. These notes provide hints for 
migrating pre-existing code to the new API.   
 
To compile these notes, we took the 0.50 version of the ClientZero demonstration program and 
attempted to integrate it to the new RP1. Thus, they reflect our experiences in migrating the 
software. The total time required to make the migration was approximately 1/2 hour. Of course, 
the migration went quickly for us because we knew the stuff pretty well and already had a pretty 
good idea of what needed to be done for the migration before we started. Still, we hope that the 
migration task should not be unduly difficult for those who need to perform it. 
 
In all cases consult either the UsersGuide or Javadoc based API documentation for further 
details. 
 
Finally, we should note that we do not expect to have to perform such extensive API changes to 
the RP1 in the future.  When changes do become necessary, we hope to be able to preserve 
backward compatibility. 
 
 
 
1. Check your CLASSPATH settings 
 
An incorrect CLASSPATH setting is, by far, the most common problem users have in migrating 
RP1. If the CLASSPATH is not correct, code will not compile. Refer to the RP1 Users Guide or 
http://rossum.sourceforge.net/sim/install.html document for further details. 
 
2. Change the import statements 
 
Recall that the package organization of RP1 changes for  Revision 0.60. To import RP1 client 
side classes, you will need the following import statements in your code 

 
 
    import rp1.rossum.*; 
    import rp1.rossum.event.*; 
    import rp1.rossum.request.*; 
 

     
In many cases, it make be possible to omit the import statement related to requests. Very careful 
programmers might prefer to change the import statements to include only those classes that they 
absolutely need as in: 

 
 
    import rp1.rossum.event.RsTimeoutEvent; 
    import rp1.rossum.event.RsTimeoutEventHandler; 
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3. Replace RsWheelSystem constructors 
 
The meaning of the RsWheelSystem class changes in 0.60. You should not attempt to instantiate 
it directly (it is now an abstract class). Instead, you should replace it with one of its two currently 
available derived classes, either RsDifferentialSteering or RsAckermanSteering. The 
RsDifferentialSteering class is the direct replacement for the old RsWheelSystem class, though 
its constructors take slightly different arguments than the original. 
 
Note that the differential steering class with not include wheels for depiction unless you add 
them using either the addWheel or addDefaultWheels method.  We recommend that in your 
initial implementation, you use the addDefaultWheels call. 
 
4.  Event handlers change 
 
The RsTransaction class no longer exists. It was a mistake, and we're glad it's gone. If you 
developed code following the examples provided in the earlier release, than all your event 
handlers will feature a method called 
 

   processTransaction(RsTransaction ...) 

    
This method should be removed.  In the example code, processTransaction was usually just a 
"pass-through" to a call to a method called process which operated on the specific event of 
interest. So, fortunately, it should be enough just to remove processTransaction. Otherwise you 
will have to add an event-specific process method such as  

 
 
    void process(RsTimeoutEvent timeout); 
   
 

 
5. The getMotionRequest method changes 
 
The first argument of the old getMotionRequest, a boolean flag, is no longer used. Remove it. In 
the new RsAckermanSteering class, the getMotionRequest will not always be able to support 
activities for certain parameters (for example, an automobile type locomotion mechanism cannot 
execute a pivot operation). 
 
6. The constructors for RsMotionRequest change 
 
The design of the old motion request was deeply flawed. It was coupled to a differential steering 
system, but a  motion request is really intended to be a platform-independent request for motion. 
So the paramters have changed and new constructor is incompatible with the old. If the way the 
new RsMotionRequest operates is incompatible with your application objectives, you may find it 
useful to look at the new RsActuatorControlRequest. 
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7. All Time Values Are Now Expressed In Seconds 
 
This is a significant change. In debugging, it was the one with which we had the most trouble. In 
the old system, times were expressed in integer milliseconds. In the new, they are expressed as 
floating-point seconds. Here are a few hints for finding instances of time specifications 
 
Methods with the substring "Millis" in their name no longer exist. The compiler will help you 
find places where these are used.  The string "Millis" does not appear in any element or method 
of any public class in the RP1 package (though there are still Java methods such as 
System.currentTimeMillis that do use that convention). 
 
Look for elements named "duration", "simTime", and time. These will all need to change. 
 
Look for the constant 1000 in computations. If you were converting seconds to milliseconds, you 
no longer need to do so. 
 
Double check all references to sendTimeoutRequest and sendHeartbeatRequest, both of which 
took  time values are arguments.  
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